© The Institution of Engineering and Technology
Clindamycin hydrochloride (CLH) is a clinically important oral antibiotic with wide spectrum of antimicrobial activity that includes gram-positive aerobes (staphylococci, streptococci etc.), most anaerobic bacteria, Chlamydia and certain protozoa. The current study was focused to develop a stabilised clindamycin encapsulated poly lactic acid (PLA)/poly (D,L-lactide-co-glycolide) (PLGA) nano-formulation with better drug bioavailability at molecular level. Various nanoparticle (NPs) formulations of PLA and PLGA loaded with CLH were prepared by solvent evaporation method varying drug: polymer concentration (1:20, 1:10 and 1:5) and characterised (size, encapsulation efficiency, drug loading, scanning electron microscope, differential scanning calorimetry [DSC] and Fourier transform infrared [FTIR] studies). The ratio 1:10 was found to be optimal for a monodispersed and stable nano formulation for both the polymers. NP formulations demonstrated a significant controlled release profile extended up to 144 h (both CLH-PLA and CLH-PLGA). The thermal behaviour (DSC) studies confirmed the molecular dispersion of the drug within the system. The FTIR studies revealed the intactness as well as unaltered structure of drug. The CLH-PLA NPs showed enhanced antimicrobial activity against two pathogenic bacteria Streptococcus faecalis and Bacillus cereus. The results notably suggest that encapsulation of CLH into PLA/PLGA significantly increases the bioavailability of the drug and due to this enhanced drug activity; it can be widely applied for number of therapies.
References
-
-
1)
-
1. Darley, E.S., MacGowan, A.P.: ‘Antibiotic treatment of gram-positive bone and joint infections’, J. Antimicrob. Chemother., 2004, 53, (6), pp. 928–935 (doi: 10.1093/jac/dkh191).
-
2)
-
2. Daum, R.S.: ‘Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus‘, N. Eng. J. Med., 2007, 357, (4), pp. 380–390 (doi: 10.1056/NEJMcp070747).
-
3)
-
3. Brook, I., Lewis, M.A., Sándor, G.K., et al: ‘Clindamycin in dentistry: more than just effective prophylaxis for endocarditis?’, Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod., 2005, 100, pp. 550–558 (doi: 10.1016/j.tripleo.2005.02.086).
-
4)
-
4. Lell, B., Kremsner, P.G.: ‘Clindamycin as an antimalarial drug: review of clinical trials’, Antimicrob. Agents. Chemother., 2002, 46, (8), pp. 2315–2320 (doi: 10.1128/AAC.46.8.2315-2320.2002).
-
5)
-
5. Annane, D., Clair, B., Salomon, J.: ‘Managing toxic shock syndrome with antibiotics’, Expert. Opin. Pharmacother., 2004, 5, (8), pp. 1701–1710 (doi: 10.1517/14656566.5.8.1701).
-
6)
-
6. Coyle, E.A.: ‘Targeting bacterial virulence: the role of protein synthesis inhibitors in severe infections’, Soc. Infect. Dis. Pharm. Pharmacother., 2003, 23, (5), pp. 638–642.
-
7)
-
7. Gao, P., Nie, X., Zou, M., et al: ‘Recent advances in materials for extended-release antibiotic delivery system’, J. Antibiot. (Tokyo), 2011, 64, pp. 625–634 (doi: 10.1038/ja.2011.58).
-
8)
-
8. Jong, W.H.D., Borm, P.J.A.: ‘Drug delivery and nanoparticles: applications and hazards’, Int. J. Nanomedicine, 2008, 3, (2), pp. 133–149 (doi: 10.2147/IJN.S596).
-
9)
-
9. Patel, A., Patel, M., Yang, X., et al: ‘Recent advances in protein and peptide drug delivery: a special emphasis on polymeric nanoparticles’, Protein Pept. Lett., 2014, 21, (11), pp. 1102–1120 (doi: 10.2174/0929866521666140807114240).
-
10)
-
10. Diab, R., Jaafar-Maalej, C., Fessi, H., et al: ‘Engineered nanoparticulate drug delivery systems: the next frontier for oral administration?’, AAPS J., 2012, 14, (4), pp. 688–702 (doi: 10.1208/s12248-012-9377-y).
-
11)
-
11. Ulery, B.D., Nair, L.S., Laurencin, C.T.: ‘Biomedical applications of biodegradable polymers’, J. Polym. Sci. B: Polym. Phys., 2011, 49, (12), pp. 832–864 (doi: 10.1002/polb.22259).
-
12)
-
12. Pinto-Alphandary, H., Andremont, A., Couvreur, P.: ‘Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications’, Int. J. Antimicrob. Agents, 2000, 13, pp. 155–168 (doi: 10.1016/S0924-8579(99)00121-1).
-
13)
-
13. Abdelghany, S.M., Quinn, D.J., Ingram, R.J., et al: ‘Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection’, Int. J. Nanomed., 2012, 7, pp. 4053–4063.
-
14)
-
14. Seleem, M.N., Munusamy, P., Ranjan, A., et al: ‘Silica-antibiotic hybrid nanoparticles for targeting intracellular pathogens’, Antimicrob. Agents Chemother., 2009, 53, pp. 4270–4274 (doi: 10.1128/AAC.00815-09).
-
15)
-
15. Machado, S.R.P., Evangelista, R.C.: ‘Development and characterization of cefoxitin loaded D, L-PLA nanoparticles’, J. Basic. Appl. Sci., 2010, 31, (3), pp. 193–202.
-
16)
-
16. Fawzy, A.E., Salah, M.B.: ‘Spectrophotometric and titrimetric determination of clindamycin hydrochloride in pharmaceutical preparations’, Analyst., 1993, 118, pp. 577–579 (doi: 10.1039/an9931800577).
-
17)
-
17. CLSI, Wayne: ‘Clinical and laboratory standards institute methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobicall’, , 2006.
-
18)
-
18. Thomasin, C., Corradin, G., Men, Y., et al: ‘Tetanus toxoid and synthetic malaria antigen containing poly (lactide)/poly(lactide-co-glycolide) microspheres: importance of polymer degradation and antigen release for immune response’, J. Control Release, 1996, 41, pp. 131–145 (doi: 10.1016/0168-3659(96)01363-6).
-
19)
-
19. Rosler, A., Vandermeulen, G.W.M., Klok, H.A.: ‘Advanced drug delivery devices via self-assembly of amphiphilic block copolymers’, Adv. Drug Deliv. Rev., 2001, 53, pp. 95–108 (doi: 10.1016/S0169-409X(01)00222-8).
-
20)
-
20. Santhi, K., Venkatesh, D.N., Dhanaraj, S.A., et al: ‘Development and In-vitro evaluation of a topical drug delivery system containing Betamethazone loaded ethyl cellulose nanospheres’, Trop. J. Pharm. Res., 2005, 4, (20), pp. 495–500.
-
21)
-
21. Ravikumara, N.R., Madhusudhan, B., Nagaraj, T.S., et al: ‘Preparation and evaluation of Nimesulide-loaded ethylcellulose and methylcellulose nanoparticles and microparticles for oral delivery’, J. Biomater. Appl., 2009, 24, pp. 47–63 (doi: 10.1177/0885328209103406).
-
22)
-
22. Nayak, B., Panda, A.K., Ray, P.: ‘Formulation, characterization and evaluation of rotavirus encapsulated PLA and PLGA particles for oral vaccination’, J. Microencapsul., 2009, 26, (2), pp. 154–165 (doi: 10.1080/02652040802211709).
-
23)
-
23. McNaught, A.D., Wilkinson, A.: Blackwell Scientific Publications, Oxford. .
-
24)
-
24. Tripathi, A., Gupta, R., Saraf, S.A.: ‘PLGA nanoparticles of anti tubercular drug: drug loading and release studies of a water in-soluble drug’, Int. J. Pharm. Tech. Res., 2010, 2, (3), pp. 2116–2123.
-
25)
-
25. Gander, B., Johansen, P., Nam-trân, H., et al: ‘Thermodynamic approach to protein microencapsulation into poly (D,L-lactide) by spray drying’, Int. J. Pharm., 1996, 129, pp. 51–61 (doi: 10.1016/0378-5173(95)04240-7).
-
26)
-
26. Prior, S., Gamazo, C., Irache, J.M., et al: ‘Gentamicin encapsulation in PLA/PLGA microspheres in view of treating Brucella infections’, Int. J.Pharm., 2000, 16, pp. 115–125 (doi: 10.1016/S0378-5173(99)00448-2).
-
27)
-
27. Yasemin, C., Robineau, C., Çapan, Y.: ‘Etodolac loaded Poly (Lactide Co-Glycolide) nanoparticles: formulation and in vitro characterization’, Hacettepe Univ. J Faculty Pharm., 2009, 29, (2), pp. 105–114.
-
28)
-
28. Kashi, T.S., Eskandarion, S., Esfandyari-Manesh, M., et al: ‘Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method’, Int. J. Nanomedicine., 2012, 7, pp. 221–234.
-
29)
-
29. Rawat, A., Majumder, Q.H., Ahsan, F.: ‘Inhalable large porous microspheres of low molecular weight heparin: in vitro and in vivo evaluation’, J. Control. Release, 2008, 128, pp. 224–232 (doi: 10.1016/j.jconrel.2008.03.013).
-
30)
-
30. Dubernet, C.: ‘Thermoanalysis of microspheres’, Thermo. Chim. Acta., 1995, 248, pp. 259–269 (doi: 10.1016/0040-6031(94)01947-F).
-
31)
-
31. Ford, J.L., Timmins, P.: ‘Pharmaceutical thermal analysis’ (John Wiley & Sons, Chichester, 1989).
-
32)
-
32. Narladkar, A., Balnois, E., Vignaud, G., et al: ‘Difference in glass transition behavior between semi crystalline and amorphous poly (lactic acid) thin films’, Macromol. Symp., 2008, 273, pp. 146–152 (doi: 10.1002/masy.200851321).
-
33)
-
33. Hariharan, M., Price, J.C.: ‘Solvent, emulsifier and drug concentration factors in poly-(D,L-Lactic acid) microspheres containing hexamethylmelamine’, J. Microencapsul., 2002, 19, (1), pp. 95–109 (doi: 10.1080/02652040110081398).
-
34)
-
34. Jordan, J., Jacob, K.I., Tannenbaum, R., et al: ‘Experimental trends in polymer nanocomposites: A review’, Mater. Sci. Eng., 2005, 393, pp. 1–11 (doi: 10.1016/j.msea.2004.09.044).
-
35)
-
35. Devi, T.S.R., Gayathri, S.: ‘FTIR and FT-Raman spectral analysis of Paclitaxel drugs’, Int. J. Pharmaceut. Sci. Rev. Res., 2010, 2, (2), pp. 106–110.
-
36)
-
36. Azhdarzadeh, M., Lotfipour, F., Zakeri-Milani, P., et al: ‘Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and gram positive bacteria’, Adv. Pharmaceut. Bull., 2012, 2, (1), pp. 17–24.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2015.0021
Related content
content/journals/10.1049/iet-nbt.2015.0021
pub_keyword,iet_inspecKeyword,pub_concept
6
6