Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Escherichia coli bacteria detection by using graphene-based biosensor

Graphene is an allotrope of carbon with two-dimensional (2D) monolayer honeycombs. A larger detection area and higher sensitivity can be provided by graphene-based nanosenor because of its 2D structure. In addition, owing to its special characteristics, including electrical, optical and physical properties, graphene is known as a more suitable candidate compared to other materials used in the sensor application. A novel model employing a field-effect transistor structure using graphene is proposed and the current–voltage (IV) characteristics of graphene are employed to model the sensing mechanism. This biosensor can detect Escherichia coli (E. coli) bacteria, providing high levels of sensitivity. It is observed that the graphene device experiences a drastic increase in conductance when exposed to E. coli bacteria at 0–105 cfu/ml concentration. The simple, fast response and high sensitivity of this nanoelectronic biosensor make it a suitable device in screening and functional studies of antibacterial drugs and an ideal high-throughput platform which can detect any pathogenic bacteria. Artificial neural network and support vector regression algorithms have also been used to provide other models for the IV characteristic. A satisfactory agreement has been presented by comparison between the proposed models with the experimental data.

Inspec keywords: support vector machines; nanosensors; neural nets; medical computing; biosensors; microorganisms; regression analysis; drugs

Other keywords: nanosensor-provided sensitivity; biosensor sensitivity level; nanosensor-provided detection area; E. coli detection; antibacterial drug screening; two-dimensional monolayer honeycombs; bacteria detection; graphene-based nanosenor; nanosensor sensitivity level; support vector regression algorithms; field-effect transistor structure; nanoelectronic biosensor sensitivity; biosensor-based bacterial detection; biosensor-detected E. coli bacteria; biosensor-detected Escherichia coli; sensing mechanism modeling; ideal high-throughput bacterial detection platform; graphene I-V characteristics; nanosensor optical properties; artificial neural network; graphene-based biosensor; graphene current–voltage characteristics; nanosensor physical properties; 2D nanosensor structure; nanosensor electrical properties; carbon allotrope; 2D monolayer honeycombs; special nanosensor characteristics; graphene device conductance; Escherichia coli detection; pathogenic bacteria-detecting biosensor

Subjects: Electrical properties of graphene and graphene-related materials (thin films, low-dimensional and nanoscale structures); Biology and medical computing; Knowledge engineering techniques; Preparation of graphene and graphene-related materials, intercalation compounds, and diamond; Neural computing techniques; Nanotechnology applications in biomedicine; Biomedical engineering; Micromechanical and nanomechanical devices and systems; Probability theory, stochastic processes, and statistics; Biosensors

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 17. Akbari, E., Arora, V.K., Enzevaee, A., Ahmadi, M.T., Khaledian, M., Yusof, R.: ‘Gas concentration effects on the sensing properties of bilayer graphene’. Plasmonics, 2014, pp. 16.
    18. 18)
    19. 19)
      • 28. Schölkopf, B., Burges, C.J., Smola, A.J.: ‘Advances in kernel methods: support vector learning’ (MIT press, 1999).
    20. 20)
    21. 21)
      • 30. Foxe, M., Lopez, G., Childres, I., et al: ‘Detection of ionizing radiation using graphene field effect transistors’. IEEE Nuclear Science Symp. Conf. Record, Orlando, Florida, 2009, vols 1–5, pp. 9095.
    22. 22)
      • 2. Wittstock, A., Biener, J., Erlebacher, J.: ‘Nanoporous gold: from an ancient technology to a high-tech material’, (Royal Society of Chemistry, London, 2012).
    23. 23)
      • 20. Gunn, S.R.: ‘Support vector machines for classification and regression’. ISIS technical report, 1998, vol. 14.
    24. 24)
      • 43. Ismail, R., Ahmadi, M.T., Anwar, S.: ‘Advanced nanoelectronics’ (CRC Press, 2012).
    25. 25)
    26. 26)
    27. 27)
      • 38. Welling, M.: ‘Support vector regression’ (Department of Computer Science, University of Toronto, Toronto, Kanada, 2004).
    28. 28)
    29. 29)
      • 3. Stahlbock, R., Lessmann, S.: ‘Potential von support vektor maschinen im analytischen customer relationship management’ (Universität Hamburg, Hamburg, Arbeitspapier, 2004).
    30. 30)
    31. 31)
    32. 32)
      • 50. Müller, K.-R., Smola, A.J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.: ‘Predicting time series with support vector machines’. Artificial Neural Networks – ICANN'97, Springer, 1997, pp. 9991004.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 1. Anthony, M.: ‘Computational learning theory’ (Cambridge University Press, Cambridge, 1997).
    39. 39)
    40. 40)
    41. 41)
      • 31. Ohno, Y., Maehashi, K., Matsumoto, K.: ‘Graphene field-effect transistors for label-free biological sensors’. 2010 IEEE Sensors, 2010, pp. 903906.
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
      • 40. Lundstrom, M., Guo, J.: ‘Nanoscale transistors: device physics, modeling and simulation’ (Springer Science & Business Media, 2006).
    47. 47)
    48. 48)
    49. 49)
      • 39. Ahmadi, M.T., Johari, Z., Amin, N.A., Fallahpour, A.H., Ismail, R.: ‘Graphene nanoribbon conductance model in parabolic band structure’, J. Nanomater., 2010. doi: 10.1155/2010/753738.
    50. 50)
    51. 51)
    52. 52)
    53. 53)
      • 5. Song, J.M., Kwon, H.T.: ‘Photodiode array on-chip biosensor for the detection of E. coli O157: H7 pathogenic bacteria’. Biosensors and Biodetection, Springer, 2009, pp. 325335.
    54. 54)
      • 37. Caucheteur, C., Guo, T., Albert, J.: ‘Review of plasmonic fiber optic biochemical sensors: improving the limit of detection’, Anal. Bioanal. Chem., 2015, pp. 115. doi: 10.1007/s00216-014-8411-6.
    55. 55)
    56. 56)
    57. 57)
    58. 58)
      • 44. Datta, S.: ‘Quantum transport: atom to transistor’ (Cambridge University Press, 2005).
    59. 59)
      • 42. Wong, H.-S.P.P., Akinwande, D.: ‘Carbon nanotube and graphene device physics’ (Cambridge University Press, 2010).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2015.0010
Loading

Related content

content/journals/10.1049/iet-nbt.2015.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address