Your browser does not support JavaScript!

access icon free Lawsonia inermis-mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel

Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO3. The Ag-NPs were characterized by Ultraviolet-Visible (UV–Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.

Inspec keywords: biodiffusion; biomedical materials; nanomedicine; silver; cellular biophysics; Fourier transform spectra; infrared spectra; gels; antibacterial activity; reduction (chemical); ultraviolet spectra; biochemistry; visible spectra; microorganisms; nanofabrication; transmission electron microscopy; nanoparticles; drugs

Other keywords: Microsporum canis; L. inermis; zeta potential; antibiotics; Lawsonia inermis mediated synthesis; Candida albicans; M. canis; microbial resistance; capped nanoparticle formation; antimicrobial nanogel formulation; intermediate complex formation; P. acne; C. albicans; Trichophyton mentagrophytes; antimicrobial nanoparticle gel; UV-vis spectrophotometer; bioreduction; Ag; antimicrobial activity; silver nanoparticles; T. mentagrophytes; nanoparticle tracking; bactericidal agents; disc diffusion method; Fourier transform infrared spectroscopy; human pathogenic fungi; leaf extract; biosynthesis route; UV-visible spectrophotometer; Propioniabacterium acne; transmission electron microscopy; fungicidal agents; drug-resistant microorganisms; chemical agents

Subjects: Infrared and Raman spectra in metals; Physical chemistry of biomolecular solutions and condensed states; Cellular biophysics; Gels and sols; Specific chemical reactions; reaction mechanisms; Nanotechnology applications in biomedicine; Biomedical materials; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Visible and ultraviolet spectra of metals, semimetals, and alloys; Methods of nanofabrication and processing


    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 14. Gade, A.K., Bonde, P., Ingle, A.P., Marcato, P.D., Duran, N., Rai, M.K.: ‘Exploitation of Aspergillus niger for synthesis of silver nanoparticles’, J. Biobased Mater. Bioenergy, 2008, 2, pp. 243247 (doi: 10.1166/jbmb.2008.401).
    24. 24)
      • 7. Siddiqui, B.S., Kardar, M.N., Ali, S.T., Khan, S.: ‘Two new and a known compound from Lawsonia inermis’, Helv. Chim. Acta, 2003, 86, (6), pp. 21642169 (doi: 10.1002/hlca.200390174).
    25. 25)
      • 9. Lavhate, M.S., Mishra, S.H.: ‘A review: nutritional and therapeutic potential of Ailanthus excelsa, Pharmacognosy Rev., 2007, 1, (1), pp. 105113.
    26. 26)
      • 15. Duran, N., Marcarto, P.D., De Souza, G.I.H., Alves, O.L., Esposito, E.: ‘Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment’, J. Biomed. Nanotechnol., 2007, 3, pp. 203208 (doi: 10.1166/jbn.2007.022).
    27. 27)
      • 11. Mirmirani, P., Hessol, N.A., Maurer, T.A., Berger, T.G., Nguyen, P., Khalsa, A.: ‘Prevalence and predictors of skin disease in the women's interagency HIV study (WIHS)’, J. Am. Acad. Dermatol., 2001, 44, pp. 785788 (doi: 10.1067/mjd.2001.112350).
    28. 28)
      • 16. Li, Y., Leung, P., Yao, L., Song, Q.W., Newton, E.: ‘Antimicrobial effects of surgical masks coated with nanoparticles’, J. Hosp. Infection, 2006, 62, pp. 5863 (doi: 10.1016/j.jhin.2005.04.015).
    29. 29)
      • 24. Kasthuri, J., Veerapandian, S., Rajendiran, N.: ‘Biological synthesis of silver and gold nanoparticles using apiin as reducing agent’, Colloids Surf., B, 2009, 68, pp. 5560 (doi: 10.1016/j.colsurfb.2008.09.021).
    30. 30)
      • 27. Gade, A.K., Gaikwad, S.C., Tiwari, V., Yadav, A., Ingle, A.P., Rai, M.K.: ‘Biofabrication of silver nanoparticles by Opuntia ficus-indica: in vitro antibacterial activity and study of the mechanism involved in the syntheses’, Curr. Nanosci., 2010, 6, pp. 370375 (doi: 10.2174/157341310791659026).
    31. 31)
      • 3. Chung, W.H., Chang, Y.C., Yang, L.J., Hung, S.I., Wong, W.R., Lin, J.Y.: ‘Clinicopathologic features of skin reactions to temporary tattoos and analysis of possible causes’, Arch. Dermatol., 2002, 138, pp. 8892 (doi: 10.1001/archderm.138.1.88).
    32. 32)
      • 18. Bonde, S.R.: ‘A biogenic approach for green synthesis of silver nanoparticles using extract of Foeniculum vulgare and its activity against Staphylococcus aureus and Escherichia coli’, Nusantara Biosci., 2011, 3, (2), pp. 5963.
    33. 33)
      • 23. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, pp. 26382650 (doi: 10.1039/c1gc15386b).
    34. 34)
      • 6. Ahmadian, S., Fakhree, M.A.: ‘Henna (Lawsonia inermis) might be used to prevent mycotic infection’, Med. Hypotheses, 2009, 73, pp. 629630 (doi: 10.1016/j.mehy.2009.06.001).
    35. 35)
      • 4. Habbal, O.A., Al-Jabri, A.A., El-Hag, A.G.: ‘Antimicrobial properties of Lawsonia inermis (henna): a review’, Aust. J. Med. Herbalism, 2007, 19, pp. 114125.
    36. 36)
      • 10. Woodfolk, J.A.: ‘Allergy and dermatophytes’, Clin. Microbiol. Rev., 2005, 18, pp. 3043 (doi: 10.1128/CMR.18.1.30-43.2005).
    37. 37)
      • 21. Chaudhary, G., Golyal, S., Poonia, P.: ‘Lawsonia inermis Linnaeus: a phytopharmacological review’, Int. J. Pharm. Sci. Drug Res., 2010, 2, (2), pp. 9198.
    38. 38)
      • 2. Cragg, G.M., Newman, D.J., Sander, K.M.: ‘Natural products in drug discovery and development’, J. Nat. Prod., 1997, 60, pp. 5260 (doi: 10.1021/np9604893).
    39. 39)
      • 5. Abulyazid, I., Elsayed, M.E., Mahdy, B., Ragaa, M., Ahmed, M.: ‘Biochemical study for the effect of henna (Lawsonia inermis) on Escherichia coli, Arab. J. Chem., 2013, 6, (3), pp. 265273 (doi: 10.1016/j.arabjc.2010.10.005).
    40. 40)
      • 25. Begum, N.A., Mondal, S., Basu, S., Laskar, R.A., Mandal, D.: ‘Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts’, Colloids Surf., B, 2009, 71, pp. 113118 (doi: 10.1016/j.colsurfb.2009.01.012).
    41. 41)
      • 22. Rajendran, R., Hemalatha, S., Akasakalai, K., MadhuKrishna, C.H., Sohil, B., Sundaram, M.R.: ‘Hepatoprotective activity of Mimosa pudica leaves against carbontetrachloride induced toxicity’, J. Nat. Prod., 2010, 2, pp. 116122.
    42. 42)
      • 8. Thevenot, D.R., Toth, K., Durst, R.A., Wilson, G.S.: ‘Electrochemical biosensors: recommended definitions and classification’, Biosens. Bioelectron., 2001, 16, pp. 121131 (doi: 10.1016/S0956-5663(01)00115-4).
    43. 43)
      • 20. Sun, L., Simmons, B.A., Singh, S.: ‘Understanding tissue specific compositions of bioenergy feedstocks through hyperspectral Raman imaging’, Biotechnol. Bioeng., 2011, 108, (2), pp. 28695 (doi: 10.1002/bit.22931).
    44. 44)
      • 12. Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C., Rai, M.: ‘Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria’, Curr. Nanosci., 2008, 4, pp. 141144 (doi: 10.2174/157341308784340804).
    45. 45)
      • 26. Kora, A.J., Sashidhar, R.B., Arunachalam, J.: ‘Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application’, Carbohydrate Polym., 2010, 82, (3), pp. 670679 (doi: 10.1016/j.carbpol.2010.05.034).
    46. 46)
      • 1. Bandyopadhyay, U., Biswas, K., Chattopadhyay, I., Banerjee, R.K.: ‘Biological activities and medicinal properties of neem (Azadirachta indica)’, Curr. Sci., 2002, 82, (11), pp. 13361345.
    47. 47)
      • 28. Gade, A., Rai, M., Kulkarni, S.: ‘Phoma sorghina, a phytopathogen mediated synthesis of unique silver rod’, Int. J. Green Nanotechnol., 2011, 3, (3), pp. 153159 (doi: 10.1080/19430892.2011.628573).
    48. 48)
      • 17. Montes-Burgos, D., Hole, W.P., Smith, J., Lynch, I., Dawson, K.: ‘Characterisation of nanoparticle size and state prior to nanotoxicological studies’, J. Nanoparticle Res., 2010, 12, pp. 4753 (doi: 10.1007/s11051-009-9774-z).
    49. 49)
      • 13. Rai, M., Yadav, A., Gade, A.: ‘Silver nanoparticles as a new generation of antimicrobials’, Biotechnol. Adv., 2009, 27, (1), pp. 7683 (doi: 10.1016/j.biotechadv.2008.09.002).
    50. 50)
      • 19. Bonde, S.R., Rathod, D.P., Ingle, A.P., Ade, R.B., Gade, A.K., Rai, M.K.: ‘Murraya koenigii mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria’, Nanoscience Meth., 2012, 1, pp. 2536 (doi: 10.1080/17458080.2010.529172).

Related content

This is a required field
Please enter a valid email address