http://iet.metastore.ingenta.com
1887

Review: three synthesis methods of CdX (X = Se, S or Te) quantum dots

Review: three synthesis methods of CdX (X = Se, S or Te) quantum dots

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Quantum dots (QDs) are one of the first nanotechnologies to be integrated with the biological sciences that used for imaging or tracking macromolecules/cells in cell/tissue. Because of QDs are important in biomedical and biological applications, identify a variety of synthesis methods to produce QDs with different characteristics also is particularly important. Hence, in this review the authors discussed three methods for synthesis of heavy metal chalcogenide-based QDs for use in biomedical field: (i) Organometallic method for synthesis of QDs consists of three components: precursors, organic surfactants and solvents. The authors also discussed water-solubilisation strategies of synthesised QDs including encapsulation and ligand exchange. (ii) Aqueous synthesis technique using short-chain thiols as stabilising agents is a useful alternative to organometallic synthesis of CdSe, CdS and CdTe QDs. (iii) The third method discussed in this article for QDs synthesis involves the utilise of microorganisms to prepare QDs with controlled size, shape, chemical composition and functionality. The authors also discussed recently new methods for the synthesis of the appropriate QDs for use in biology. In addition, attachment of biomolecules such as antibodies, oligonucleotides on the surface of QDs for specific targeting and different opinions about toxicity of QD have been studied.

Inspec keywords: II-VI semiconductors; semiconductor quantum dots; surfactants; solvation; wide band gap semiconductors; organometallic compounds; biochemistry; cadmium compounds; biomedical engineering; encapsulation; nanomedicine; nanofabrication; toxicology; colloids; solubility; molecular biophysics; microorganisms; proteins

Other keywords: organometallic method; QD toxicity; biological sciences; QD shapes; biological tissues; CdSe; controlled size QDs; synthesised QDs; cell tracking; biomedical applications; cell imaging; microorganism utilization; antibodies; QD chemical composition; precursors; water solubilisation strategies; CdTe; biomolecule attachments; QD characteristics; macromolecule tracking; solvents; encapsulation; biological applications; shortchain thiols; organic surfactants; stabilising agents; CdS; ligand exchange; biomolecular specific targeting; oligonucleotides; aqueous synthesis technique; QD functionality; quantum dot nanotechnology; heavy metal chalcogenide-based QD synthesis; macromolecule imaging

Subjects: Physical chemistry of biomolecular solutions and condensed states; Biomedical engineering; Solid-fluid interface processes; Low-dimensional structures: growth, structure and nonelectronic properties; Colloids; Methods of nanofabrication and processing; Association, addition, and insertion; Biomolecular dynamics, molecular probes, molecular pattern recognition; Biomolecular interactions, charge transfer complexes; Nanotechnology applications in biomedicine; Solubility, segregation, and mixing

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
      • 50. Peng, X., Thessing, J.: ‘Controlled synthesis of high quality semiconductor nanocrystals’, in Peng, X., Mingos, D.(Eds.): ‘Semiconductor nanocrystals and silicate nanoparticles’ (Springer, Berlin, Heidelberg, 2005), pp. 79119.
    51. 51)
      • 51. Ekimov, A.I., Onushchenko, A.A., Tsekhomskii, V.A.: ‘Exciton absorption by copper(I) chloride crystals in a glassy matrix’, Fizika i Khimiya Stekla, 1980, 6, p. 511.
    52. 52)
    53. 53)
    54. 54)
    55. 55)
      • 55. Bakar, N.A., Umar, A.A., Aziz, T.H.T., et al, (Eds.):Synthesis of CdSe quantum dots: effect of surfactant on the photoluminescence property’. Semiconductor Electronics, 2008 ICSE 2008 IEEE Int. Conf.,25–27 November 2008.
    56. 56)
    57. 57)
    58. 58)
    59. 59)
    60. 60)
      • 60. Clarke, S.J.: ‘Synthesis, biological targeting and photophysics of quantum dots’ (McGill University, 2008).
    61. 61)
    62. 62)
    63. 63)
      • 63. Guo, L.: ‘Synthesis and characterization of II-VI and IV-VI colloidal semiconductor quantum dots’ (University of Rochester, New York, 2008).
    64. 64)
    65. 65)
    66. 66)
    67. 67)
    68. 68)
    69. 69)
    70. 70)
      • 71. Rogach, A.L.: ‘Semiconductor nanocrystal quantum dots: synthesis, assembly, spectroscopy and applications’ (Springer, 2008).
    71. 71)
    72. 72)
    73. 73)
    74. 74)
    75. 75)
    76. 76)
    77. 77)
    78. 78)
    79. 79)
    80. 80)
    81. 81)
      • 83. Kumar, C.S.S.R.: ‘Semiconductor nanomaterials’ (John Wiley & Sons, 2010).
    82. 82)
    83. 83)
      • 85. Cassette, E., Helle, M., Bezdetnaya, L., Marchal, F., Dubertret, B., Pons, T.: ‘Design of new quantum dot materials for deep tissue infrared imaging’, Adv. Drug Deliv. Rev., 2012.
    84. 84)
    85. 85)
    86. 86)
      • 89. Shan Jin, Y.H., Gu, Z., Liu, L., Wu, H.-C.: ‘Application of quantum dots in biological imaging’, J. Nanomater., 2011, 2011, pp. 113.
    87. 87)
    88. 88)
    89. 89)
    90. 90)
    91. 91)
    92. 92)
    93. 93)
    94. 94)
    95. 95)
    96. 96)
    97. 97)
      • 100. Choi, S.Y., Shim, J.P., Kim, D.S., Kim, T.Y., Suh, K.S.: ‘Aqueous synthesis of CdTe quantum dot using dithiol-functionalized ionic liquid’, J. Nanomater., 2012, 2012, pp. 10.
    98. 98)
    99. 99)
    100. 100)
    101. 101)
    102. 102)
    103. 103)
    104. 104)
    105. 105)
    106. 106)
      • 110. Laddaga, R.A., Bessen, R., Silver, S.: ‘Cadmium-resistant mutant of Bacillus subtilis 168 with reduced cadmium transport’, J. Bacteriol., 1985, 162, pp. 11061110.
    107. 107)
    108. 108)
      • 112. Mullen, M.D., Wolf, D.C., Ferris, F.G., Beveridge, T.J., Flemming, C.A., Bailey, G.W.: ‘Bacterial sorption of heavy metals’, Appl. Environ. Microbiol., 1989, 55, (12), pp. 31433149.
    109. 109)
      • 113. Aiking, H., Kok, K., van Heerikhuizen, H., van 't Riet, J.: ‘Adaptation to cadmium by Klebsiella aerogenes growing in continuous culture proceeds mainly via formation of cadmium sulfide’, Appl. Environ. Microbiol., 1982, 44, (4), pp. 938944.
    110. 110)
      • 114. Aiking, H., Stijnman, A., van Garderen, C., van Heerikhuizen, H., van 't Riet, J.: ‘Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture’, Appl. Environ. Microbiol., 1984, 47, (2), pp. 374377.
    111. 111)
      • 115. Macaskie, L.E., Dean, A.C.: ‘Cadmium accumulation by a Citrobacter sp’, J. Gen. Microbiol., 1984, 130, (1), pp. 5362.
    112. 112)
    113. 113)
    114. 114)
    115. 115)
    116. 116)
    117. 117)
    118. 118)
    119. 119)
    120. 120)
    121. 121)
    122. 122)
      • 126. Cunningham, D.P., Lundie, L.L. Jr.: ‘Precipitation of cadmium by Clostridium thermoaceticum’, Appl. Environ. Microbiol., 1993, 59, (1), pp. 714.
    123. 123)
    124. 124)
    125. 125)
    126. 126)
    127. 127)
    128. 128)
    129. 129)
    130. 130)
      • 134. Qiu, H.K., Shen, Y., Wang, L.J., Zhang, J.C., Qin, K.F., (Eds.):Synthesis of high-performance aqueous CdSe quantum dots based on combination of Se source as vapor-phase and hydrothermal method’ (Trans Tech. Publ, 2011).
    131. 131)
    132. 132)
    133. 133)
    134. 134)
    135. 135)
      • 139. Rong, X.L., Zhao, Q., Tao, G.H.: ‘Aqueous synthesis of CdSe and CdSe/CdS quantum dots with controllable introduction of Se and S sources’, Chin. Chem. Lett., 2012.
    136. 136)
    137. 137)
    138. 138)
    139. 139)
    140. 140)
    141. 141)
    142. 142)
    143. 143)
      • 147. Liu, M., Zhao, H., Chen, S., Wang, H., Quan, X.: ‘Photochemical synthesis of highly fluorescent CdTe quantum dots for ‘on–off–on’ detection of Cu (II) ions’, Inorg. Chim. Acta, 2012.
    144. 144)
    145. 145)
    146. 146)
    147. 147)
    148. 148)
    149. 149)
    150. 150)
    151. 151)
    152. 152)
    153. 153)
    154. 154)
    155. 155)
    156. 156)
    157. 157)
    158. 158)
    159. 159)
    160. 160)
      • 164. Shiohara, A., et al: ‘On the cyto-toxicity caused by quantum dots’, Microbiol Immunol, 2004, 48, pp. 669675.
    161. 161)
    162. 162)
    163. 163)
    164. 164)
    165. 165)
    166. 166)
    167. 167)
    168. 168)
    169. 169)
      • 173. Chen, N., et al: ‘The cytotoxicity of cadmium-based quantum dots’, Biomaterials, 2012, 33, pp. l2381244.
    170. 170)
    171. 171)
      • 175. Su, Y., et al: ‘The cytotoxicity of cadmium based, aqueous phase-synthesized, quantum dots and its modulation by surface coating’, Biomaterials, 2009, 30, pp. l925.
    172. 172)
    173. 173)
      • 177. Tang, M., et al: ‘Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons’, Environmental health perspectives, 2008, 116, pp. 915.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2012.0028
Loading

Related content

content/journals/10.1049/iet-nbt.2012.0028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address