Bandwidth enhancement of stacked dielectric resonator antennas excited by a coaxial probe: an experimental and numerical investigation

Access Full Text

Bandwidth enhancement of stacked dielectric resonator antennas excited by a coaxial probe: an experimental and numerical investigation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An experimental and numerical investigation about bandwidth enhancement of dielectric resonator antennas (DRAs) using multiple DRAs, arranged according to a ‘stacked’ configuration is reported. The antenna consists of two cylindrical discs of the dielectrics Cr0.75Fe1.25O3 (CRFO) and Fe0.5Cu0.75Ti0.75O3 (FCTO) stacked vertically, placed above a ground plane and excited by a coaxial probe. The lateral edge of the cylinder should be placed against the feed probe, which excites the ${\rm HEM}_{11{\rm \delta}}$ mode. The numerical procedure is performed through a software package based on the finite-element method. An excellent agreement between theoretical and experimental results is observed. The concept of increasing the bandwidth of the DRA by stacking is verified. For the first time, the temperature coefficient of resonant frequency (τf) was also measured for CRFO and FCTO ceramics.

Inspec keywords: iron compounds; copper compounds; chromium compounds; antenna feeds; dielectric resonator antennas; finite element analysis; antenna arrays

Other keywords: Cr0.75Fe1.25O3; temperature coefficient; bandwidth enhancement; CRFO ceramics; multiple DRA; software package; coaxial probe; FCTO ceramics; antenna feed; Fe0.5Cu0.75Ti0.75O3; finite-element method; resonant frequency; stacked dielectric resonator antenna

Subjects: Finite element analysis; Antenna arrays; Antenna accessories

References

    1. 1)
      • G.P. Junker , A.A. Kishk , A.W. Glisson , D. Kajfez . Effect of air gap on cylindrical dielectric resonator antenna operating in TM01 mode. Electron. Lett. , 2 , 97 - 98
    2. 2)
      • Y. Guo , Y. Ruan , X. Shi . Wide-band stacked double annular-ring dielectric resonator antenna at the end-fire mode operation. IEEE Trans. Antennas Propag. , 10 , 3394 - 3397
    3. 3)
      • Lee, R.Q., Simons, R.N.: `Bandwidth enhancement of dielectric resonator antennas', IEEE AP S Int. Symp. Digest, Jun 1993, 3, p. 1500–1503.
    4. 4)
      • H.H.B. Rocha , F.N.A. Freire , M.R.P. Santos , J.M. Sasaki , T. Cordaro , A.S.B. Sombra . Radio-frequency (RF) studies of the magnetodielectric composites: Cr0.75Fe1.25O3 (CRFO)–Fe0.5Cu0.75Ti0.75O3 (FCTO).
    5. 5)
      • A.A. Kishk , B. Ahn , D. Kajfez . Broadband stacked dielectric resonator antennas. Electron. Lett. , 1232 - 1233
    6. 6)
      • A.G. Walsh , S.D. Young , S.A. Long . An investigation of stacked and embedded cylindrical dielectric resonator antennas. IEEE Antennas Wirel. Propag. Lett. , 130 - 133
    7. 7)
      • Y. Kobayashi , S. Tanaka . Resonant modes of a dielectric rod resonator short-circuited at both ends by parallel conducting plates. IEEE Trans. on Microw. Theory Tech. , 10 , 1077 - 1085
    8. 8)
      • A.G. Cockbain , P.J. Harrop . The temperature coefficient of capacitance. J. Phys. D: Appl. Phys. , 1109 - 1115
    9. 9)
      • Y. Kobayashi , S. Tanaka . Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Trans. Microw. Theory Tech. , 7 , 586 - 592
    10. 10)
      • K.M. Luk , K.W. Leung . (2003) Dielectric Resonator Antennas.
    11. 11)
      • H.H.B. Rocha , F.N.A. Freire , R.C.S. Costa . Dielectric resonator antenna: operation of the magnetodielectric composites Cr0.75Fe1.25O3 (CRFO)/Fe0.5Cu0.75Ti0.75O3 (FCTO). Microw. Opt. Technol. Lett. , 2 , 409 - 413
    12. 12)
      • P.J. de Castro , M.C.A. Nono . Microwave properties of barium nanotitanate dielectric resonators. J. Microw. Optoelectron. , 4 , 12 - 19
    13. 13)
      • H.H.B. Rocha , F.N.A. Freire , R.R. Silva . Structural properties of Cr0.75Fe1.25O3:Fe0.5Cu0.75Ti0.75O3 magnetodielectric composite.
    14. 14)
      • A.A. Kishk , X. Zhang , A.W. Glisson , D. Kajfez . Numerical analysis of stacked dielectric resonator antennas excited by a coaxial probe for wideband applications. IEEE Trans. Antennas Propag. , 8 , 1996 - 2006
    15. 15)
      • R. Chair , A.A. Kishk , K.F. Lee . Wideband simple cylindrical dieletric resonator antennas. IEEE Microw. Wireless Comp. Lett. , 4 , 241 - 243
    16. 16)
      • S.A. Long , M.W. McAllister , C. Shen . The resonant cylindrical dielectric cavity antenna. IEEE Trans. Antennas Propag. , 3 , 406 - 412
    17. 17)
      • B.W. Hakki , P.D. Coleman . A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. , 402 - 410
    18. 18)
      • Z. Peng , H. Wang , X. Yao . Dielectric resonator antennas using high permittivity ceramics. Ceram. Int. , 1211 - 1214
    19. 19)
      • P.G. Junker . Effect of an air gap around the coaxial probe exciting a cylindrical dielectric resonator antenna. Electron. Lett. , 3 , 177 - 178
    20. 20)
      • W.E. Coutney . Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. IEEE Trans. Microw. Theory Tech. , 8 , 476 - 485
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map_20070292
Loading

Related content

content/journals/10.1049/iet-map_20070292
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading