http://iet.metastore.ingenta.com
1887

Hybrid channel modelling for ultra-wideband portable multimedia applications

Hybrid channel modelling for ultra-wideband portable multimedia applications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An efficient approach in modelling the ultra-wideband channel (UWB) by combining deterministic and statistic techniques is presented. The hybrid approach aims at lowering the complexity of modelling the UWB indoor channel by combining simple 2.5D ray tracing and measurement statistics. A UWB measurement campaign in an office environment is reported. The mean signal level and the rms delay spread values obtained from the ray-tracing tool are compared with measurements at several locations in the studied environment. Average statistical difference terms are added to the values of mean signal level and rms delay spread obtained from ray tracing to improve predictions. This approach results in the hybrid model and achieves computational efficiency by eliminating the need of modelling complex details of scatterers in the environment.

References

    1. 1)
      • Federal Communications Commission, FCC rules section 15.517, available at: www.fcc.gov.
    2. 2)
      • M.Z. Win , R.A. Scholtz . Impulse radio: how it works. IEEE Commun. Lett. , 2 , 36 - 38
    3. 3)
      • Siwiak, K.: `Ultra wide band radio: introducing a new technology', IEEE 53rd Vehicular Technology Conf. VTC2001, 2001, 2, p. 1088–1093.
    4. 4)
      • Intel White Paper Wireless USB: ‘The first high speed personal wireless interconnect’, available at: www.intel.com/technology/ultrawideband 2004.
    5. 5)
      • A. Saleh , R. Valenzuela . A statistical model for indoor multipath propagation. IEEE J. Sel. Areas Commun. , 2 , 128 - 137
    6. 6)
      • D. Cassioli , M.Z. Win , A.F. Molisch . The ultra-wide bandwidth indoor channel: from statistical model to simulations. IEEE J. Sel. Areas Commun. , 6 , 1247 - 1257
    7. 7)
      • S.S. Ghassemzadeh , R, Jana , C.W. Rice , W, Turin , V. Tarokh . Measurement and modeling of an ultra-wide bandwidth indoor channel. IEEE Trans. Commun. , 1786 - 1796
    8. 8)
      • A.K. Brown . Ultrawideband propagation–an overview. The IEE Seminar on Ultrawideband Communications Technologies and System Design , 31 - 34
    9. 9)
      • A.F. Molisch . Ultrawideband propagation channels—theory, measurement, and modeling. IEEE Trans. Veh. Technol. , 5 , 1528 - 1545
    10. 10)
      • WPAN High Rate Alternative PHY. IEEE 802.15.3a Task Group 2005 [Online]. Available at: http://www.ieee802.org/15/pub/TG3a.html.
    11. 11)
      • WPAN Low Rate Alternative PHY. IEEE 802.15.4a Task Group 2005 [Online]. Available at: http://www.ieee802.org/15/pub/TG4a.html.
    12. 12)
      • Kunisch, J., Pamp, J.: `Measurement results and modeling aspects for the UWB radio channel', IEEE Conf. Ultra Wideband Systems and Technologies, May 2002, p. 21–29.
    13. 13)
      • A.V. Oppenheim , R.W. Schafer . (1989) Discrete-time signal processing.
    14. 14)
      • K.M. Nasr , F. Costen , S.K. Barton . A wall imperfection channel model for signal level prediction and its impact on smart antenna systems for indoor infrastructure WLAN. IEEE Trans. Antennas Propag. , 11 , 3767 - 3775
    15. 15)
      • Nasr, K.M., Costen, F., Barton, S.K.: `A spatial channel model and a beamformer for smart antennas in broadcasting studios', 12thInt. Conf. Antennas and Propagation (ICAP 2003), March 2003, 2, p. 828–831.
    16. 16)
      • I. Cuinas , M.G. Sanchez . Measuring, modelling and characterizing of indoor radio channel at 5.8 GHz. IEEE Trans. Veh. Technol. , 2 , 526 - 535
    17. 17)
      • C.R. Anderson , T.S. Rappaport . In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Trans. Wirel. Commun. , 3 , 922 - 928
    18. 18)
      • Stavrou, S., Sauders, S.R.: `Review of constitutive parameters of building materials', 12thInt. Conf. Antennas and Propagation (ICAP 2003), March 2003, 1, p. 211–215.
    19. 19)
      • M.F. Catedra , J. Perez . (1999) Cell planning for wireless communications.
    20. 20)
      • H.L. Bertoni , W. Honcharenko , L.R. Maciel , H.H. Xia . UHF propagation prediction for wireless personal communications. Proc. IEEE , 9 , 1333 - 1359
    21. 21)
      • W. Honcharenko , H. Bertoni , J. Dailing , H. Yee . Mechanisms governing UHF propagation on single floors in modern office buildings. IEEE Trans. Veh. Technol. , 4 , 496 - 504
    22. 22)
      • T.S. Rappaport . (1996) Wireless communications: principles and practice.
    23. 23)
      • R.G. Vaughan , J.B. Andersen . (2004) Channels, propagation and antennas for mobile communications.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map_20060305
Loading

Related content

content/journals/10.1049/iet-map_20060305
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address