access icon free Ka band microstrip fed slot array antenna with PMC packaging

A wideband slot array antenna fed by perfect magnetic conductor (PMC) packaged microstrip lines at 28 GHz frequency range is presented. The slot array is designed with conventional microstrip technology and a PMC layer is used as a packaging solution to stop surface waves, cavity modes or any unwanted field leakage, coupling or radiation from the feeding lines. The PMC is implemented with a periodic metal pin structure. The array is fed by a corporate feed system and a good agreement with experimental results is obtained.

Inspec keywords: antenna feeds; microstrip antenna arrays; slot antenna arrays; antenna radiation patterns; electronics packaging

Other keywords: PMC packaging; periodic metal pin structure; packaged microstrip lines; feeding lines; cavity modes; PMC layer; feeding line coupling; feeding line radiation; Ka band microstrip fed slot array antenna; surface waves; frequency 28.0 GHz; perfect magnetic conductor; packaging solution; corporate feed system; wideband slot array antenna; unwanted field leakage; microstrip technology

Subjects: Product packaging; Antenna arrays; Antenna accessories

References

    1. 1)
      • 9. Zarifi, D., Farahbakhsh, A., Zaman, A.U.: ‘A gap waveguide-fed wideband patch antenna array for 60-GHz applications’, IEEE Trans. Antennas Propag., 2017, 65, (9), pp. 48754879.
    2. 2)
      • 28. Chen, X., Wu, K., Han, L., et al: ‘Low-cost high gain planar antenna array for 60-GHz band applications’, IEEE Trans. Antennas Propag., 2010, 58, (6), pp. 21262129.
    3. 3)
      • 23. Zhang, J., Zhang, X., Shen, D., et al: ‘Packaged microstrip line: a new quasi-TEM line for microwave and millimeter-wave applications’, IEEE Trans. Microw. Theory Tech., 2017, 65, (3), pp. 707719.
    4. 4)
      • 22. Sorkherizi, M.S., Kishk, A.A.: ‘Fully printed gap waveguide with facilitated design properties’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (9), pp. 657659.
    5. 5)
      • 20. Rajo-Iglesias, E., Pucci, E., Kishk, A.A., et al: ‘Suppression of parallel plate modes in low frequency microstrip circuit packages using lid of printed zigzag wires’, IEEE Microw. Wirel. Compon. Lett., 2013, 23, (7), pp. 359361.
    6. 6)
      • 5. Kildal, P.S., Valero-Nogueira, E., Rajo-Iglesias, A., et al: ‘Local metamaterial-based waveguides in gaps between parallel metal plates’, IEEE Antennas Wirel. Propag. Lett., 2009, 8, pp. 8487.
    7. 7)
      • 26. Li, M., Luk, K.: ‘A low-profile unidirectional printed antenna for millimeter-wave applications’, IEEE Trans. Antennas Propag., 2014, 62, (3), pp. 12321237.
    8. 8)
      • 10. Guan, D., Ding, C., Qian, Z., et al: ‘An SIW-based large-scale corporate-feed array antenna’, IEEE Trans. Antennas Propag., 2015, 63, (7), pp. 29692976.
    9. 9)
      • 24. Ashraf, N., Sebak, A.R., Kishk, A.A.: ‘Packaged microstrip line feed network on a single surface for dual-polarized 2n2m me-dipole antenna array’, IEEE Antennas Wirel. Propag. Lett., 2020, 19, (4), pp. 596600.
    10. 10)
      • 21. Brazalez, A.A., Zaman, A.U., Kildal, P.S.: ‘Improved microstrip filters using PMC packaging by lid of nails’, IEEE Trans. Compon. Packag. Manuf. Technol., 2012, 2, (7), pp. 10751084.
    11. 11)
      • 7. Liu, J., Vosoogh, A., Zaman, A.U., et al: ‘A slot array antenna with single-layered corporate-feed based on ridge gap waveguide in the 60 GHz band’, IEEE Trans. Antennas Propag., 2019, 67, (3), pp. 16501658.
    12. 12)
      • 12. Gu, X., Liu, D., Baks, C., et al: ‘Development, implementation, and characterization of a 64-element dual-polarized phased-array antenna module for 28-GHz high-speed data communications’, IEEE Trans. Microw. Theory Tech., 2019, 67, (7), pp. 29752984.
    13. 13)
      • 25. Ramírez-Gil, F., Algaba-Brazález, D., Herrán-Ontanón, A., et al: ‘Comparison study of 4×4 butler matrices in microstrip technologies for ka-band’, AEU-Int. J. Electron. Commun., 2020, 122, p. 153248. Available at http://www.sciencedirect.com/science/article/pii/S1434841120303939.
    14. 14)
      • 13. Kibaroglu, K., Sayginer, M., Phelps, T., et al: ‘A 64-element 28-GHz phased-array transceiver with 52-dBm EIRP and 8–12-gb/s 5G link at 300 meters without any calibration’, IEEE Trans. Microw. Theory Tech., 2018, 66, (12), pp. 57965811.
    15. 15)
      • 27. Awida, M.H., Suleiman, S.H., Fathy, A.E.: ‘Substrate-integrated cavity-backed patch arrays: a low-cost approach for bandwidth enhancement’, IEEE Trans. Antennas Propag., 2011, 59, (4), pp. 11551163.
    16. 16)
      • 2. Vosoogh, A., Kildal, P.: ‘Corporate-fed planar 60-GHz slot array made of three unconnected metal layers using AMC pin surface for the gap waveguide’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 19351938.
    17. 17)
      • 18. Rajo-Iglesias, E., Pucci, E., Kildal, P.: ‘New microstrip gap waveguide on mushroom-type EBG for packaging of microwave components’, IEEE Microw. Wirel. Compon. Lett., 2012, 22, (3), pp. 129131.
    18. 18)
      • 1. Miura, Y., Hirokawa, J., Ando, M., et al: ‘Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band’, IEEE Trans. Antennas Propag., 2011, 59, (8), pp. 28442851.
    19. 19)
      • 3. Ferrando-Rocher, E., Rajo-Iglesias, M., Zaman, A.U.: ‘Gap waveguide technology for millimeter-wave antenna systems’, IEEE Commun. Mag., 2018, 56, (7), pp. 1420.
    20. 20)
      • 4. Farahbakhsh, A., Zarifi, D., Zaman, A.U.: ‘A mmwave wideband slot array antenna based on ridge gap waveguide with 30% bandwidth’, IEEE Trans. Antennas Propag., 2018, 66, (2), pp. 10081013.
    21. 21)
      • 11. Guan, D., Qian, Z., Zhang, Y., et al: ‘Novel SIW cavity-backed antenna array without using individual feeding network’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 423426.
    22. 22)
      • 8. Valero-Nogueira, M., Herranz-Herruzo, A., Ferrando-Rocher, J.I., et al: ‘60 Hz single-layer slot-array antenna fed by groove gap waveguide’, IEEE Antennas Wirel. Propag. Lett., 2019, 18, (5), pp. 846850.
    23. 23)
      • 15. Rajo-Iglesias, E., Zaman, A.U., Kildal, P.: ‘Parallel plate cavity mode suppression in microstrip circuit packages using a lid of nails’, IEEE Microw. Wirel. Compon. Lett., 2010, 20, (1), pp. 3133.
    24. 24)
      • 19. Rajo-Iglesias, E., Kildal, P.S., Zaman, A.U., et al: ‘Bed of springs for packaging of microstrip circuits in the microwave frequency range’, IEEE Trans. Compon. Packag. Manuf. Technol., 2012, 2, (10), pp. 16231628.
    25. 25)
      • 16. Zaman, A.U., Alexanderson, M., Vukusic, T., et al: ‘Gap waveguide PMC packaging for improved isolation of circuit components in high-frequency microwave modules’, IEEE Trans. Compon. Packag. Manuf. Technol., 2014, 4, (1), pp. 1625.
    26. 26)
      • 17. Silveirinha, M.G., Fernandes, C.A., Costa, J.R.: ‘Electromagnetic characterization of textured surfaces formed by metallic pins’, IEEE Trans. Antennas Propag., 2008, 56, (2), pp. 26952700.
    27. 27)
      • 14. Pozar, D.: ‘Considerations for millimeter wave printed antennas’, IEEE Trans. Antennas Propag., 1983, 31, (5), pp. 740747.
    28. 28)
      • 6. Kildal, P.S., Rajo-Iglesias, A.U., Zaman, E., et al: ‘Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression’, IET Microw. Antennas Propag., 2011, 5, (3), pp. 262270.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2020.0565
Loading

Related content

content/journals/10.1049/iet-map.2020.0565
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading