Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Enhancing the performance of defected ground structure type near-field radiofrequency WPT system by coupled-line impedance matching

This study reports, for the first time, the use of coupled-line-based impedance matching in wireless power transfer (WPT) system. The transmitter and receiver of the WPT system are realised by microstrip feed line and symmetric coupled line at the top plane. The ground plane is realised with triangular-shaped defect along with the excitation slot mounted by an external capacitor. The defect in the ground plane and the external capacitor regulate the resonant frequency and also enable miniaturisation of the WPT system. The design is augmented with a systematic analytical approach for impedance matching and a simplified design procedure for the WPT system. A novel equivalent circuit model consisting of parallel LC network and coupled lines is also developed for the evaluation of the proposed WPT system design technique. A prototype of the system operating at 300 MHz developed on Rogers RO4350B substrate achieves a peak efficiency of 80% at a transmission distance of 17 mm. An excellent agreement between the measured and the electromagnetic simulated results is a testament of the robustness of the proposed design technique. Furthermore, evaluation of the commonly used WPT-related figure of merit shows significant enhancement when compared to the existing state of the art.

References

    1. 1)
      • 28. Malhotra, S., Hashmi, M.: ‘Near-field WPT using defected ground structures for UHF RFID applications’. 2019 IEEE Int. Conf. on RFID Technology and Applications (RFID-TA), 2019, pp. 1621.
    2. 2)
      • 24. Tahar, F., Barakat, A., Saad, R., et al: ‘Dual band defected ground structures wireless power transfer system with independent external and inter-resonator coupling’. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2017, 64, pp. 13721376.
    3. 3)
      • 25. Jensen, T., Zhurbenko, V., Krozer, V., et al: ‘Coupled transmission lines as impedance transformer’, IEEE Trans. Microw. Theory Tech., 2007, 55, (12), pp. 29572965.
    4. 4)
      • 21. Hekal, S., Abdel-Rahman, A. B., Jia, H., et al: ‘A novel technique for compact size wireless power transfer applications using defected ground structures’, IEEE Trans. Microw. Theory Tech., 2017, 65, (2), pp. 591599.
    5. 5)
      • 10. Ling, Z., Hu, F., Wang, L., et al: ‘Point-to-point wireless information and power transfer in WBAN with energy harvesting’, IEEE Access, 2017, 5, pp. 86208628.
    6. 6)
      • 27. Garg, R., Bahl, I., Bozzi, M.: ‘Microstrip lines and slotlines’ (Artech House, Norwood, MA, USA., 2013).
    7. 7)
      • 3. Rano, D., Hashmi, M.: ‘Extremely compact EBG-backed antenna for smartwatch applications in medical body area network’, IET Microw. Antennas Propag., 2019, 13, (7), pp. 10311040.
    8. 8)
      • 2. Agarwal, K., Jegadeesan, R., Guo, Y., et al: ‘Wireless power transfer strategies for implantable bioelectronics’, IEEE Rev. Biomed. Eng., 2017, 10, pp. 136161.
    9. 9)
      • 7. Kang, S. H., Nguyen, V. T., Jung, C. W.: ‘Analysis of MR-WPT using planar textile resonators for wearable applications’, IET Microw Anten. Propag., 2016, 10, (14), pp. 15411546.
    10. 10)
      • 16. Ngo, T., Huang, A. D., Guo, Y. X.: ‘Analysis and design of a reconfigurable rectifier circuit for wireless power transfer’, IEEE Trans. Ind. Electron., 2019, 66, (9), pp. 70897098.
    11. 11)
      • 14. Brown, W. C.: ‘The history of power transmission by radio waves’, IEEE Trans. Microw. Theory Tech., 1984, 32, (9), pp. 12301242.
    12. 12)
      • 13. Jang, B. J., Lee, S., Yoon, H.: ‘HF-band Wireless power transfer system: concept, issues, and design’, Prog. Electromagn. Res., 2012, 124, pp. 211231.
    13. 13)
      • 29. Hekal, S., Abdel-Rahman, A. B., Jia, H., et al: ‘Strong resonant coupling for short-range wireless power transfer applications using defected ground structures’. IEEE Wireless Power Transfer Conf., Boulder, CO, USA., 2015, pp. 14.
    14. 14)
      • 22. Saad, M. R., Tahar, F., Barakat, A., et al: ‘Analysis of near field wireless power transfer using bow-tie defected ground structure’.2017 IEEE Asia Pacific Microwave Conf., Kuala Lumpur, Malaysia, 2017, pp. 495498.
    15. 15)
      • 12. Ye, Z. H., Sun, Y., Dai, X., et al: ‘Energy efficiency analysis of U-coil wireless power transfer system’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 48094817.
    16. 16)
      • 20. Sharaf, R., Abdel-Rahman, A. B., Abd El-Hameed, A. S., et al: ‘A new compact dual-band wireless power transfer system using interlaced resonators’, IEEE Microw. Wirel. Compon. Lett., 2019, 29, (7), pp. 498500.
    17. 17)
      • 19. Verma, S., Rano, D., Hashmi, M.: ‘A novel dual band defected ground structure for short range wireless power transfer applications’. IEEE Wireless Power Transfer Conf., London, UK., 2019, pp. 188191.
    18. 18)
      • 18. Dautov, K., Hashmi, M., Nauryzbayev, G., et al: ‘Recent advancements in defected ground structure based near-field wireless power transfer systems’, IEEE Access, 2020, 8, pp. 8129881309.
    19. 19)
      • 5. Huh, J., Lee, S. W., Lee, W. Y., et al: ‘Narrow-width inductive power transfer system for online electrical vehicles’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 36663679.
    20. 20)
      • 26. Grover, F. W.: ‘Inductance calculations: working formulas and tables’ (Courier Corporation, New York, USA., 1946).
    21. 21)
      • 8. Lee, H. H., Kang, S. H., Jung, C. W.: ‘3D-spatial efficiency optimisation of MR-WPT using a reconfigurable resonator-array for laptop applications’, IET Microw. Antennas Propag., 2017, 11, (11), pp. 15941602.
    22. 22)
      • 17. Verma, S., Rano, D., Hashmi, M., et al: ‘A high Q dual E shaped defected ground structure for wireless power transfer applications’. IEEE Asia Pacific Microwave Conf., Kyoto, Japan, November 2019, pp. pp. 14351437.
    23. 23)
      • 11. Soltesz, K., Sturk, C., Paskevicius, A., et al: ‘Closed-loop prevention of hypotension in the heart beating brain-dead porcine model’, IEEE Trans. Biomed. Eng., 2017, 64, (6), pp. 13101317.
    24. 24)
      • 23. Barakat, A., Hekal, S., Pokharel, R.K.: ‘Simple design approach for asymmetric resonant inductive coupled WPT systems using J-inverters’. IEEE Asia Pacific Microwave Conf., New Delhi, India, 2016, pp. 13.
    25. 25)
      • 1. Cost Action IC1301 Team: ‘Europe and the future for WPT: european contributions to wireless power transfer technology’, IEEE Microw. Mag., 2017, 18, (4), pp. 5687.
    26. 26)
      • 15. Dai, J., Ludois, D.C.: ‘Single active switch power electronics for kilowatt scale capacitive power transfer’, IEEE J. Emerg. Sel. Top. Power Electron., 2015, 3, (1), pp. 315323.
    27. 27)
      • 9. Hirai, J., Kim, T. W., Kawamura, A.: ‘Study on intelligent battery charging using inductive transmission of power and information’, IEEE Trans. Power Electron., 2000, 15, (2), pp. 335345.
    28. 28)
      • 4. Kung, M., Lin, K.: ‘Dual-band coil module with repeaters for diverse wireless power transfer applications’, IEEE Trans. Microw. Theory Tech., 2018, 66, (1), pp. 332345.
    29. 29)
      • 6. Xue, R. F., Cheng, K. W., Je, M.: ‘High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation’, IEEE Trans. Circuits Syst. I, 2013, 60, (4), pp. 867874.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2020.0217
Loading

Related content

content/journals/10.1049/iet-map.2020.0217
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address