Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Strong, omnidirectional radar backscatter from subwavelength, 3D printed metacubes

Metallic metacubes formed of six metal plate faces connected via a metal jack are shown to backscatter microwave radiation extremely powerfully. Experimental radar scattering cross-section (RCS) data from three-dimensional (3D) printed samples agrees very well with numerical model predictions, showing a monostatic RCS of 15 times the geometric cross-section. The principal resonance of the metacubes demonstrates near-complete independence of the incident angle or polarisation of the radiation, making the metacube an omnidirectional scatterer. The metacubes are fabricated via additive manufacturing from metal-coated polymer, and are extremely lightweight, making them excellent candidates for improving the radar return signals from small objects such as drones and cubesats.

References

    1. 1)
      • 18. Chen, X., Jia, B., Saha, J.K., et al: ‘Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles’, Nano Lett.., 2012, 12, pp. 21872192.
    2. 2)
      • 20. Huang, Y., Boyle, K.: ‘Antennas: from theory to practise’ (Wiley, USA., 2008).
    3. 3)
      • 9. Jie, G., Hong-Cheng, Y., Qi, J.: ‘An empirical RCS formula of bistatic Luneberg lens reflector’, Procedia Comput. Sci., 2019, 147, pp. 97101 (Elsevier B.V.).
    4. 4)
      • 10. Vinogradov, S.S., Smith, P.D., Kot, J.S., et al: ‘Radar cross-section studies of spherical lens reflectors’, Prog. Electromagn. Res., 2007, 72, pp. 325337.
    5. 5)
      • 7. Jacklin, S.A.: ‘Small-Satellite Mission Failure Rates’, NASA Technical Memo, 2018, p. 220034.
    6. 6)
    7. 7)
      • 4. Li, C.J., Ling, H.: ‘An investigation on the radar signatures of small consumer drones’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 649652.
    8. 8)
      • 14. Yau, K.S.B.: ‘Planar multi-layer passive retrodirective Van Atta array reflectors at X-band’. 2015 Int. Symp. on Antennas and Propagation, ISAP 2015 (Institute of Electrical and Electronics Engineers Inc.), Tasmania, Australia, 2016.
    9. 9)
      • 8. Li, C., Yin, J., Zhao, J., et al: ‘The selection of artificial corner reflectors based on RCS analysis’, Acta Geophys., 2012, 60, pp. 4358.
    10. 10)
      • 6. O'Malley, J.: ‘The no drone zone [airport security]’, Eng. Technol., 2019, 14, pp. 3434.
    11. 11)
      • 17. Atwater, H.A., Polman, A.: ‘Plasmonics for improved photovoltaic devices’, Nature Mater., 2010, 9, pp. 205213.
    12. 12)
      • 24. Powell, A.W., Smith, J.M.: ‘Mediating Fano losses in plasmonic scatterers by tuning the dielectric environment’, Appl. Phys. Lett., 2016, 109, p. 121107.
    13. 13)
      • 5. Speretta, S., Soriano, T.P., Bouwmeester, J., et al: ‘Cubesats to pocketqubes: opportunities and challenges’. 67th Int. Astronautical Congress (IAC), Beijing, China, 2016.
    14. 14)
      • 23. Kawasaki, N., Meuret, S., Weil, R., et al: ‘Extinction and scattering properties of high-order surface plasmon modes in silver nanoparticles probed by combined spatially resolved electron energy loss spectroscopy and cathodoluminescence’, ACS Photonics, 2016, 3, pp. 16541661.
    15. 15)
      • 13. Feng, M., Li, Y., Zhang, J., et al:Wide-angle flat metasurface corner reflector’, Appl. Phys. Lett., 2018, 113, p. 143504.
    16. 16)
      • 26. NPL SMART testing chamber’, Available at: https://www.npl.co.uk/products-services/radiofrequency/smart-chamber.
    17. 17)
      • 22. Terman, F.: ‘Radio engineers’ handbook’ (McGraw-Hill Book Company, USA., 1943).
    18. 18)
      • 1. Bogle, R., Trizna, D.: ‘Small Boat HF Radar Cross Sections’, Naval Res. Lab. Memo. Rept., 1976, p. 3322.
    19. 19)
      • 21. Wolff, E.: ‘Antenna analysis’ (John Wiley and Sons, USA., 1966).
    20. 20)
    21. 21)
      • 11. Briggs, J.: ‘Target detection by marine radar’ (The Institution of Engineering and Technology, UK., 2004).
    22. 22)
      • 25. Wicks, M.C., Himed, B., Bracken, L.J.E., et al: ‘Ultra narrow band adaptive tomographic radar’. IEEE CAMSAP 2005 – First Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico, 2005, pp. 3639.
    23. 23)
      • 15. Doumanis, E., Goussetis, G., Papageorgiou, G., et al: ‘Design of engineered reflectors for radar cross section modification’, IEEE Trans. Antennas Propag., 2013, 61, pp. 232239.
    24. 24)
      • 19. Wu, J.-L., Chen, F.-C., Hsiao, Y.-S., et al: ‘Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells’, ACS Nano, 2011, 5, pp. 959967.
    25. 25)
      • 16. Powell, A.W., Wincott, M.B., Watt, A.A.R., et al: ‘Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer’, J. Appl. Phys., 2013, 113, p. 184311.
    26. 26)
      • 2. Arbuthnot, R.S., Badcoe, S.R.: ‘Enhancement of the radar echoing area of gliders at S- and X-bands’, Radio Electron. Eng., 1965, 30, pp. 123128.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2020.0178
Loading

Related content

content/journals/10.1049/iet-map.2020.0178
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address