access icon free Element phase centre and orientation compensation in conformal arrays during continuous deformations based on spherical mode expansion

Radiation field of conformal arrays can be obtained by simulation computation. There must be a trade-off between computation accuracy and complexity. With respect to applications where both high efficiency or even real-time applications and accuracy are required, such as adaptive beamformers together with time-varying array structures due to deformations or vibrations, more effective methodologies have to be employed for precise mainlobe direction maintenance and rigorous suppression of existing interferences. A method combining spherical mode expansion, rotation and translation of spherical waves, spatial displacement phase compensation, and approximations of constant element radiation patterns in local coordinate systems is proposed here, featuring one-time numerical effort for isolated element radiation patterns, fast coupling matrix calculation based on updated array configuration, and analytical radiation field expressions with limited eigenmode expansion coefficients storage requirements. Adaptive beamformers are utilised to validate the effects of remaining approximations including constant element patterns in local coordinate systems and constant mutual coupling matrix, proving the proposed method has the potential for aircraft-borne conformal antenna array radiation field analysis where deformations and vibrations occur continuously.

Inspec keywords: array signal processing; antenna radiation patterns; antenna theory; conformal antennas; interference suppression; compensation; approximation theory; matrix algebra; eigenvalues and eigenfunctions; antenna arrays

Other keywords: coupling matrix calculation; constant mutual coupling matrix; radiation field analysis; real-time applications; spherical waves; mainlobe direction maintenance; adaptive beamformers; interference suppression; isolated element radiation patterns; local coordinate systems; spherical mode expansion; aircraft-borne conformal antenna array; orientation compensation; displacement phase compensation; element phase centre; continuous deformations; time-varying array structures; eigenmode expansion coefficients storage requirements; spatial displacement phase compensation; constant element patterns; array configuration; analytical radiation field expressions; one-time numerical effort; constant element radiation patterns

Subjects: Interpolation and function approximation (numerical analysis); Signal processing and detection; Antenna arrays; Linear algebra (numerical analysis); Electromagnetic compatibility and interference; Antenna theory

References

    1. 1)
      • 23. Steyskal, H., Herd, J.S.: ‘Mutual coupling compensation in small array antennas’, IEEE Trans. Antennas Propag., 1990, 38, (12), pp. 19711975.
    2. 2)
      • 18. Yang, K., Zhao, Z., Ouyang, J., et al: ‘Optimization method on conformal array element positions for low sidelobe pattern synthesis’, IET Microwaves Antennas Propag., 2012, 6, (6), pp. 646652.
    3. 3)
      • 5. Knott, P.: ‘Antenna modelling and pattern synthesis method for conformal array system analysis’. PhD dissertation, Faculty of Electrical Engineering and Information Technology, Aachen University (RWTH), Aachen, Germany, June 2002.
    4. 4)
      • 11. Banks, D., Berden, M., Baron, B., Tenbarge, J.: ‘Structurally integrated X-band array development’, Multifunctional Struct./Integr. Sens. Antennas Neuilly-sur-Seine, France, 2006, 141, (17), pp. 17-117-12, http://www.rto.nato.int/abstracts.asp.
    5. 5)
      • 15. Arnold, E.J., Yan, J.B., Hale, R.D., et al: ‘Identifying and compensating for phase center errors in wing-mounted phased arrays for ice sheet sounding’, IEEE Trans. Antennas Propag., 2014, 62, (6), pp. 34163421.
    6. 6)
      • 13. Kiely, E., Washington, G., Bernhard, J.: ‘Design and development of smart microstrip patch antennas’, Smart Mater. Struct., 1998, 7, (6), pp. 792800.
    7. 7)
      • 14. Braaten, B.D., Roy, S., Irfanullah, I., et al: ‘Phase-compensated conformal antennas for changing spherical surfaces’, IEEE Trans. Antennas Propag., 2014, 62, (4), pp. 18801887.
    8. 8)
      • 2. Knott, P.: ‘Design and experimental results of a spherical antenna array for a conformal array demonstrator’. 2007 2nd Int. ITG Conf. on Antennas, Munich, 2007, pp. 120123.
    9. 9)
      • 24. Mongiardo, M., Tomassoni, C., Russer, P.: ‘Generalized network formulation: application to flange-mounted radiating waveguides’, IEEE Trans. Antennas Propag., 2007, 55, (6), pp. 16671678.
    10. 10)
      • 9. Borgiotti, G.V.: ‘Modal analysis of periodic planar phased arrays of apertures’, Proc. IEEE, 1968, 56, (11), pp. 18811892.
    11. 11)
      • 4. Knott, P.: ‘Design of a triple patch antenna element for double curved conformal antenna arrays’. European Conf. on Antennas and Propagation (EuCAP), Nice, France, November 2006.
    12. 12)
      • 20. Gil, J.M., Monge, J., Rubio, J., et al: ‘A CAD-oriented method to analyze and design radiating structures based on bodies of revolution by using finite elements and generalized scattering matrix’, IEEE Trans. Antennas Propag., 2006, 54, (3), pp. 899907.
    13. 13)
      • 17. Izquierdo, J.F., Rubio, J., Zapata, J.: ‘A fast technique to estimate the mutual coupling coefficients from the transmitting characteristics of an isolated element’, IEEE Antennas Wirel. Propag. Lett., 2010, 9, pp. 11821185.
    14. 14)
      • 22. Hansen, J.E.: ‘Spherical near-field antenna measurements’ (Peregrinus, London, UK, 1988).
    15. 15)
      • 16. Rubio, J., Gonzalez, M.A., Zapata, J.: ‘Generalized-scattering-matrix analysis of a class of finite arrays of coupled antennas by using 3-D FEM and spherical mode expansion’, IEEE Trans. Antennas Propag., 2005, 53, (3), pp. 11331144.
    16. 16)
      • 25. Liang, J., Zhang, X., So, H.C., et al: ‘Sparse array beampattern synthesis via alternating direction method of multipliers’, IEEE Trans. Antennas Propag., 2018, 66, (5), pp. 23332345.
    17. 17)
      • 8. Li, W.T., Hei, Y.Q., Shi, X.W.: ‘Pattern synthesis of conformal arrays by a modified particle swarm optimization’, Prog. Electromagn. Res., 2011, 117, pp. 237252.
    18. 18)
      • 6. Josefsson, L., Persson, P.: ‘Conformal array synthesis including mutual coupling’, Electron. Lett., 1999, 35, (8), pp. 625627.
    19. 19)
      • 12. Knott, P.: ‘Deformation and vibration of conformal antenna arrays and compensation techniques’. Technical Report, FGAN-FHR Research Institute for High Frequency Physics and Radar Techniques, Wachtberg, Germany, 2006.
    20. 20)
      • 19. Rieter, J.M., Arndt, F.: ‘Efficient hybrid boundary contour mode-matching technique for the accurate full-wave analysis of circular horn antennas including the outer wall geometry’, IEEE Trans. Antennas Propag., 1997, 45, (3), pp. 568570.
    21. 21)
      • 26. Vorobyov, S.A.: ‘Principles of minimum variance robust adaptive beamforming design’, Signal Process., 2013, 93, pp. 32643277.
    22. 22)
      • 1. Josefsson, L., Persson, P.: ‘Conformal array antenna theory and design’ (John Wiley & Sons, Inc., Hoboken, New Jersey, 2006).
    23. 23)
      • 21. Harrington, R.F.: ‘Time-harmonic electromagnetic fields’ (Wiley-IEEE Press, 2001), pp. 264269.
    24. 24)
      • 10. Barka, A.: ‘Integration of antennas onboard vehicles and diffraction by large and complex structures with multiple-domain-multiple-methods techniques’, Proc. IEEE, 2013, 101, (2), pp. 280297.
    25. 25)
      • 3. Knott, P.: ‘Conformal antenna arrays – design and technology for military applications’. Military Sensing Symp. (MSS), Dresden, Germany, October 2004.
    26. 26)
      • 7. Wang, Q., He, Q.Q.: ‘An arbitrary conformal array pattern synthesis method that include mutual coupling and platform effects’, Prog. Electromagn. Res., 2010, 110, pp. 297311.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2020.0113
Loading

Related content

content/journals/10.1049/iet-map.2020.0113
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading