Your browser does not support JavaScript!

Mode excitation and radiation characteristics of antennas in cylindrically stratified media

Mode excitation and radiation characteristics of antennas in cylindrically stratified media

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Guided modes excited by a current source in a multilayer cylindrical structure is thoroughly investigated. The guidance condition in the multilayer structure is formulated. Based on this, three antenna configurations in cylindrical stratified media that are of strong practical interest are rigorously investigated: viz. a monopole antenna, a conformal axially-directed slot antenna and an azimuthal slot antenna in a cylindrical layered medium. While previous treatments of such configurations did not investigate the mode-excitation problem of antennas in stratified cylindrical media and were limited in their applicability for a dipole antenna in a cylindrical medium or assumed the slot-current distribution for a slot antenna over a conducting cylinder only, the current investigation provides an in-depth and rigorous insight to the modes excited and power coupled to the excited modes for the antenna configurations and removes such restrictions. In addition to the efficient and rigorous investigation of the coupling problem for the three antenna structures, the radiation characteristics of the antenna configurations are also evaluated using the method of stationary phase, enabling a comprehensive treatment of the antenna structures from both the coupling and radiation aspects.


    1. 1)
      • 5. Akyuz, M.S., Ertürk, V.B., Kalfa, M.: ‘Closed-form green's function representations for mutual coupling calculations between apertures on a perfect electric conductor circular cylinder covered with dielectric layers’, IEEE Trans. Antennas Propag., 2011, 59, (8), pp. 30943098.
    2. 2)
      • 8. Tokgoz, C., Dural, G.: ‘Closed-form green's functions for cylindrically stratified media’, IEEE Trans. Microw. Theory Tech., 2000, 48, (1), pp. 4049.
    3. 3)
      • 2. Lech, R., Kusiek, A.: ‘Multimodal coupling matrix for an array of rectangular slots on conducting cylinder’. Int. Conf. Microwave Radar and Wireless Commun., Warsaw, Poland, May 21–23, 2012, pp. 396401.
    4. 4)
      • 15. Silva, F.C., Fonseca, S.B.A., Soares, A.J.M., et al: ‘Analysis of microstrip antennas on circular-cylindrical substrates with a dielectric overlay’, IEEE Trans. Antennas Propag., 1991, 39, (9), pp. 13981404.
    5. 5)
      • 4. Chatterjee, D., Reddy, C.J., Burkholder, R.J.: ‘Conformal arrays on variable curvature surfaces: an assessment of mutual coupling analysis’. IEEE Int. Symp. Phased Array System and Technology, Waltham, MA, USA, October 15-18 2013, pp. 821824.
    6. 6)
      • 9. Ye, L.F., Chai, S.L., Zhang, H.S., et al: ‘Solving the axial line problem for fast computation of mixed potential green's functions for cylindrically stratified media’, IEEE Trans. Microw. Theory Tech., 2013, 61, (1), pp. 2337.
    7. 7)
      • 10. Kalfa, M., Ertürk, V.B.: ‘Analysis of slotted sectoral waveguide arrays with multilayered radomes’, IEEE Trans. Antennas Propag., 2016, 64, (2), pp. 800805.
    8. 8)
      • 30. Naishadham, K., Felsen, L.B.: ‘Dispersion of waves guided along a cylindrical substrate-superstrate layered medium’, IEEE Trans. Antennas Propag., 1993, 41, (3), pp. 304313.
    9. 9)
      • 32. Harrington, R.F.: ‘Time-harmonic electromagnetic fields’ (McGraw-Hill, New York, NY, USA, 1961).
    10. 10)
      • 34. Chew, W.C.: ‘Waves and fields in inhomogeneous Media’ (Van Nostrand, New York, NY, USA, 1990).
    11. 11)
      • 24. Ebihara, S., Chew, W.C.: ‘Calculation of sommerfeld integrals for modeling vertical dipole array antenna for borehole radar’, IEICE Trans. Electron., 2003, E86C, (10), pp. 20852096.
    12. 12)
      • 23. Karan, S., Ertürk, V.B.: ‘Analysis of input impedance and mutual coupling of microstrip antennas on multilayered circular cylinders using closed-form green's function representations’, IEEE Trans. Antennas Propag., 2014, 2, (11), pp. 54855496.
    13. 13)
      • 16. Allard, R.J., Werner, D.H., Werner, P.L.: ‘Radiation pattern synthesis for arrays of conformal antennas mounted on arbitrarily-shaped three-dimensional platforms using genetic algorithms’, IEEE Trans. Antennas Propag., 2003, 51, (5), pp. 10541062.
    14. 14)
      • 1. Josefsson, L., Persson, P.: ‘Conformal array antenna theory and design’ (Wiley-IEEE Press, Piscataway, NJ, USA, 2006).
    15. 15)
      • 17. Raffaelli, S., Sipus, Z., Kildal, P.S.: ‘Analysis and measurements of conformal patch array antennas on multilayer circular cylinder’, IEEE Trans. Antennas Propag., 2005, 53, (3), pp. 11051113.
    16. 16)
      • 11. Thors, B., Josefsson, L., Rojas, R.G.: ‘The RCS of a cylindrical array antenna coated with a dielectric layer’, IEEE Trans. Antennas Propag., 2004, 52, (7), pp. 18511858.
    17. 17)
      • 28. Liang, H.Y., Yang, H.C., Zhang, J.: ‘A cylindrical conformal directional monopole antenna for borehole radar application’, IEEE Antennas Wirel. Propag. Lett., 2012, 41, pp. 15251528.
    18. 18)
      • 12. Persson, P., Rojas, R.G.: ‘High-frequency approximation for mutual coupling calculations between apertures on a perfect electric conductor circular cylinder covered with a dielectric layer: nonparaxial region’, Radio Sci., 2003, 38, (4), pp. 18-118-14.
    19. 19)
      • 21. Pereira-Filho, O.M.C.: ‘Flush-mounted cylindrical-rectangular microstrip antennas’, IET Microw., Antennas Propag., 2009, 3, (1), pp. 113.
    20. 20)
      • 14. Habashy, T.M., Ali, S.M., Kong, J.A.: ‘Input impedance and radiation pattern of cylindrical-rectangular and wraparound microstrip antennas’, IEEE Trans. Antennas Propag., 1990, 38, (5), pp. 722731.
    21. 21)
      • 27. Xing, G., Teixeira, F.L.: ‘An efficient rescaled formulation for tensor green's function computation in cylindrical multilayered media’, IEEE Trans. Antennas Propag., 2015, 63, (12), pp. 56775685.
    22. 22)
      • 22. Pereira-Filho, O.M.C., Barbosa, H.B., Diniz, C.A., et al: ‘Method of moments analysis of arrays of cylindrical microstrip antennas with superstrate’, IET Microw. Antennas Propag., 2018, 12, (4), pp. 561568.
    23. 23)
      • 3. Pathak, P., Wang, N.: ‘Ray analysis of mutual coupling between antennas on a convex surface’, IEEE Trans. Antennas Propag., 1981, 29, (6), pp. 911922.
    24. 24)
      • 19. Svezhentsev, A.Y., Soh, P.J., Yan, S., et al: ‘Green's functions for probe-fed arbitrary-shaped cylindrical microstrip antennas’, IEEE Trans. Antennas Propag., 2015, 63, (3), pp. 9931003.
    25. 25)
      • 26. Moon, H., Donderici, B., Teixeira, F.L.: ‘Stable evaluation of green's functions in cylindrically stratified regions with uniaxial anisotropic layers’, J. Comput. Phys., 2016, 325, pp. 174200.
    26. 26)
      • 7. Persson, P., Josefsson, L., Lanne, M.: ‘Investigation of the mutual coupling between apertures on doubly curved convex surfaces: theory and measurements’, IEEE Trans. Antennas Propag., 2003, 51, (4), pp. 682692.
    27. 27)
      • 13. Luk, K.M., Lee, K.F.: ‘Characteristics of the cylindrical-circular patch antenna’, IEEE Trans. Antennas Propag., 1990, 38, (7), pp. 11191123.
    28. 28)
      • 35. HFSS Ver. 13. Pittsburgh: Ansoft Corporation.
    29. 29)
      • 31. Kajfez, D., Guillon, P.: ‘Dielectric resonators’ (Noble Publishing Co., Atlanta GA, USA, 1998).
    30. 30)
      • 20. Jayakumar, I., Garg, R., Sarap, B.K., et al: ‘A conformal cylindrical microstrip array for producing omnidirectional radiation pattern’, IEEE Trans. Antennas Propag., 1986, 34, (10), pp. 12581261.
    31. 31)
      • 18. Heckler, M.V.T., Dreher, A.: ‘Analysis of conformal microstrip antennas with the discrete mode matching method’, IEEE Trans. Antennas Propag., 2011, 59, (3), pp. 784792.
    32. 32)
      • 6. Bhattacharya, D., Ghosh, B., Ghosh, R.: ‘Mutual coupling of conformal slot array on a dielectric coated conducting cylinder’. IEEE Applied Electromagnetics Conf., Aurangabad, India, December 19–22, 2017.
    33. 33)
      • 25. Moon, H., Teixeira, F.L., Donderici, B.: ‘Stable pseudoanalytical computation of electromagnetic fields from arbitrarily-oriented dipoles in cylindrically stratified media’, J. Comput. Phys., 2014, 273, pp. 118142.
    34. 34)
      • 29. Svezhentsev, A.Y., Vandenbosch, G.A.E.: ‘Mixed-potential green's functions for sheet electric current over metal-dielectric cylindrical structure’, J. Electromagn. Waves Appl., 2002, 16, (6), pp. 813835.
    35. 35)
      • 33. Bhattacharya, D., Ghosh, B., Sarabandi, K.: ‘Evaluation of efficient closed-form green's function in a cylindrically stratified medium’, IEEE Trans. Antennas Propag., 2017, 65, (3), pp. 15051510.

Related content

This is a required field
Please enter a valid email address