access icon free Broadband integrated rectenna using differential rectifier and hybrid coupler

In this study, a novel broadband rectenna system, capable of extracting energy from multiple RF sources is presented. The proposed topology employs a novel rectifying circuit comprising a two-port differential rectifier integrated with the hybrid coupler on a single board, which is the first structure of its kind possessing higher reliability. During measurement, the maximum efficiency of the proposed rectifying circuit is found to be at 4 dBm with the maximum DC voltage of 3.6 V. The proposed broadband RF energy harvesting circuit, comprising the newly designed rectifying circuit integrated with a broadband high gain Yagi antenna, can operate in the frequency range starting from 1.55 to 2.6 GHz. The broadband operation of the proposed rectenna is validated by performing measurement at three frequency points 1.81, 2.08 and 2.45 GHz using both single tone and two-tone methods in the anechoic chamber as well as in the lab environment. The proposed broadband rectenna configuration can potentially be used for extracting the RF energy simultaneously from multiple RF sources, while delivering the maximum power to a standard load.

Inspec keywords: Yagi antenna arrays; energy harvesting; UHF antennas; rectennas; rectifying circuits; reliability; broadband antennas; UHF couplers; anechoic chambers (electromagnetic)

Other keywords: multiple RF sources; broadband rectenna configuration; two-port differential rectifier; hybrid coupler; broadband RF energy harvesting circuit; rectifying circuit; maximum DC voltage; broadband integrated rectenna; broadband high gain Yagi antenna; single tone method; single board; frequency 1.55 GHz to 2.6 GHz; anechoic chamber; reliability

Subjects: Waveguide and microwave transmission line components; Antenna arrays; Electromagnetic compatibility and interference; Energy harvesting; Power electronics, supply and supervisory circuits

References

    1. 1)
      • 24. Sun, H.: ‘An enhanced rectenna using differentially-fed rectifier for wireless power transmission’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 3235.
    2. 2)
      • 37. Vaz, K., Caggiano, M.: ‘Measurement technique for the extraction of differential S-parameters from single-ended S-parameters’. 27th Int. Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2004, Bankya, Bulgaria, 2004, vol. 2, pp. 313317.
    3. 3)
      • 30. Hagerty, J.A., Helmbrecht, F.B., McCalpin, W.H., et al: ‘Recycling ambient microwave energy with broad-band rectenna arrays’, IEEE Trans. Microw. Theory Tech., 2004, 52, (3), pp. 10141024.
    4. 4)
      • 26. Chandravanshi, S., Sarma, S.S., Akhtar, M.J.: ‘Design of triple band differential rectenna for RF energy harvesting’, IEEE Trans. Antennas Propag., 2018, 66, (6), pp. 27162726.
    5. 5)
      • 28. Ribeiro Dias, L.F., Boaventua, A., De Carvalho, N.B.: ‘RF-DC converter efficiency optimization using source-pull techniques’. 2014 Int. Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC), Leuven, 2014, pp. 13.
    6. 6)
      • 25. Arrawatia, M., Baghini, M.S., Kumar, G.: ‘Differential microstrip antenna for RF energy harvesting’, IEEE Trans. Antennas Propag., 2015, 63, (4), pp. 15811588.
    7. 7)
      • 9. Song, C., Huang, Y., Zhou, J., et al: ‘A high-efficiency broadband rectenna for ambient wireless energy harvesting’, IEEE Trans. Antennas Propag., 2015, 63, (8), pp. 34863495.
    8. 8)
      • 13. Huang, Y., Shinohara, N., Toromura, H.: ‘A wideband rectenna for 2.4 GHz-band RF energy harvesting’. 2016 IEEE Wireless Power Transfer Conf. (WPTC), Aveiro, Portugal, 2016, pp. 13.
    9. 9)
      • 40. Yeo, J., Lee, J.: ‘Broadband series-fed two dipole array antenna with an integrated balun for mobile communication applications’, Microw. Opt. Technol. Lett., 2012, 54, (9), pp. 21662168.
    10. 10)
      • 34. Liu, J., Zhang, X.Y., Yang, C.: ‘Analysis and design of dual-band rectifier using novel matching network’, IEEE Trans. Circuits Syst. II, Express Briefs, 2018, 65, (4), pp. 431435.
    11. 11)
      • 27. Caillet, M., Clenet, M., Sharaiha, A., et al: ‘A compact wide-band rat-race hybrid using microstrip lines’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (4), pp. 191193.
    12. 12)
      • 11. Mansour, M.M., Kanaya, H.: ‘Compact and broadband RF rectifier with 1.5 octave bandwidth based on a simple pair of L-section matching network’, IEEE Microw. Wirel. Compon. Lett., 2018, 28, (4), pp. 335337.
    13. 13)
      • 20. Abdelhalem, S.H., Gudem, P.S., Larson, L.E.: ‘An RF to DC converter with wide-dynamic-range input matching for power recovery applications’, IEEE Trans. Circuits Syst. II, Express Briefs, 2013, 60, (6), pp. 336340.
    14. 14)
      • 18. Niotaki, K., Georgiadis, A., Collado, A., et al: ‘Dual-band resistance compression networks for improved rectifier performanc’, IEEE Trans. Microw. Theory Tech., 2014, 62, (12), pp. 35123521.
    15. 15)
      • 35. Martel, J., Fernández-Prieto, A., Lujambio, A., et al: ‘Differential lines for common-mode suppression based in hybrid microstrip/CPW technology’, IEEE Microw. Wirel. Compon. Lett., 2017, 27, (1), pp. 1315.
    16. 16)
      • 2. Palazzi, V., Prete, M.D., Fantuzzi, M.: ‘Scavenging for energy: a rectenna design for wireless energy harvesting in UHF mobile telephony bands’, IEEE Microw. Mag., 2017, 18, (1), pp. 9199.
    17. 17)
      • 6. Kim, P., Chaudhary, G., Jeong, Y.: ‘A dual-band RF energy harvesting using frequency limited dual-band impedance matching’, Prog. Electromagn. Res., 2013, 141, pp. 443461.
    18. 18)
      • 14. Shi, Y., Fan, Y., Li, Y., et al: ‘An efficient broadband slotted rectenna for wireless power transfer at LTE band’, IEEE Trans. Antennas Propag., 2019, 67, (2), pp. 814822.
    19. 19)
      • 17. Song, C., Huang, Y., Zhou, J., et al: ‘Improved ultrawideband rectennas using hybrid resistance compression technique’, IEEE Trans. Antennas Propag., 2017, 65, (4), pp. 20572062.
    20. 20)
      • 29. Huang, M., Lin, Y.L., Ou, J.-H., et al: ‘Single- and dual-band RF rectifiers with extended input power range using automatic impedance transforming’, IEEE Trans. Microw. Theory Tech., 2019, 67, (5), pp. 19741984.
    21. 21)
      • 23. Lin, Q.W., Zhang, X.Y.: ‘Differential rectifier using resistance compression network for improving efficiency over extended input power range’, IEEE Trans. Microw. Theory Tech., 2016, 64, (9), pp. 29432954.
    22. 22)
      • 32. Maktoomi, M.A., Akbarpour, M., Hashmi, M.S., et al: ‘On the dual-frequency impedance/admittance characteristic of multisection commensurate transmission line’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 64, (6), pp. 665669.
    23. 23)
      • 4. Song, C., Huang, Y., Carter, P., et al: ‘A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting’, IEEE Trans. Antennas Propag., 2016, 64, (7), pp. 31603171.
    24. 24)
      • 16. Chandravanshi, S., Akhtar, M.J.: ‘Design of efficient rectifier using IDC and harmonic rejection filter in GSM/CDMA band for RF energy harvesting’, Microw. Opt. Technol. Lett., 2013, 59, (3), pp. 681686.
    25. 25)
      • 8. Lu, P., Yang, X., Li, J., et al: ‘Polarization reconfigurable broadband rectenna with tunable matching network for microwave power transmission’, IEEE Trans. Antennas Propag., 2016, 64, (3), pp. 11361141.
    26. 26)
      • 3. Kuhn, V., Lahuec, C., Seguin, F., et al: ‘A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%’, IEEE Trans. Microw. Theory Tech., 2015, 63, (5), pp. 17681778.
    27. 27)
      • 39. Yeo, J., Lee, J.: ‘Bandwidth enhancement of double-dipole quasi-Yagi antenna using stepped slotline structure’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 694697.
    28. 28)
      • 12. Kimionis, J., Collado, A., Tentzeris, M.M., et al: ‘Octave and decade printed UWB rectifiers based on nonuniform transmission lines for energy harvesting’, IEEE Trans. Microw. Theory Tech., 2017, 65, (11), pp. 43264334.
    29. 29)
      • 33. Wu, Y., Liu, Y., Li, S., et al: ‘A generalized dual-frequency transformer for two arbitrary complex frequency-dependent impedances’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (12), pp. 792794.
    30. 30)
      • 7. Sun, H., Guo, Y., He, M., et al: ‘A dual-band rectenna using broadband yagi antenna array for ambient RF power harvesting’, IEEE Antennas Wirel. Propag. Lett., 2013, 12, pp. 918921.
    31. 31)
      • 10. Nie, M., Yang, X., Tan, G., et al: ‘A compact 2.45-GHz broadband rectenna using grounded coplanar waveguide’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 986989.
    32. 32)
      • 31. Bava, G.P., Pisani, U., Pozzolo, V.: ‘Source-pull’ technique at microwave frequencies', Electron. Lett., 1984, 20, (4), pp. 152154.
    33. 33)
      • 19. Guo, J., Zhang, H., Zhu, X.: ‘Theoretical analysis of RF-DC conversion efficiency for class-F rectifiers’, IEEE Trans. Microw. Theory Tech., 2014, 62, (4), pp. 977985.
    34. 34)
      • 5. Shariati, N., Rowe, W.S.T., Scott, J.R., et al: ‘Multi-service highly sensitive rectifier for enhanced RF energy scavenging’, Sci. Rep., 2016, 5, (9655), pp. 19.
    35. 35)
      • 1. Valenta, C.R., Durgin, G.D.: ‘Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems’, IEEE Microw. Mag., 2014, 15, (4), pp. 108120.
    36. 36)
      • 38. Besser, L., Gilmore, R.: ‘Practical RF circuit design for modern wireless systems’ (Artech House, Bosten London, 2002).
    37. 37)
      • 15. Yang, X.X., Jiang, C., Elsherbeni, A.Z., et al: ‘A novel compact printed rectenna for data communication systems’, IEEE Trans. Antennas Propag., 2013, 61, (5), pp. 25322539.
    38. 38)
      • 21. Wei, M., Chang, Y., Wang, D., et al: ‘Balanced RF rectifier for energy recovery with minimized input impedance variation’, IEEE Trans. Microw. Theory Tech., 2017, 65, (5), pp. 15981604.
    39. 39)
      • 36. Bockelman, D.E., Eisenstadt, W.R.: ‘Combined differential and common-mode scattering parameters: theory and simulation’, IEEE Trans. Microw. Theory Tech., 1995, 43, (7), pp. 15301539.
    40. 40)
      • 22. Zhang, X.Y., Du, Z., Xue, Q.: ‘High-efficiency broadband rectifier with wide ranges of input power and output load based on branch-line coupler’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2017, 64, (3), pp. 731739.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.1127
Loading

Related content

content/journals/10.1049/iet-map.2019.1127
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading