Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Wearable high gain low SAR antenna loaded with backed all-textile EBG for WBAN applications

A high gain, low specific absorption rate, oval-shaped monopole antenna is presented. It is backed by an all-textile 3 × 3 array of electromagnetic bandgap (EBG) unit cells. The antenna is printed on the thin Rogers ULTRALAM 3850 substrate, while the EBG array is composed of the conductive ShieledIT Super and dielectric substrate felt. The design operates at 2.45 GHz of the Industrial, Scientific, and Medical band. Due to the close distance between the extended grounds of the co-planar waveguide feeding configuration and the oval-shaped monopole antenna, current-coupling was achieved, leading to gain enhancement. However, with body-loading cases, resonance at 2.45 GHz was attained at a separation of 30 mm. By incorporating the EBG array, as an isolator, this issue was resolved. In free space and over a gap of 3 mm from the human body, gain enhancements by 2.68 and 11.54 dB were achieved at 2.45 GHz, respectively. Simulated and measured results are benchmarked. Furthermore, SAR simulation study showed reductions by 99.5%, averaged over 1 and 10 g of tissue.

References

    1. 1)
      • 22. Benjamin, S.C., Atif, S.: ‘Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate’, IEEE Antennas Wirel. Propag. Lett., 2013, 12, pp. 7679.
    2. 2)
      • 11. Zhi, H.J., Zheng, C., Taiwei, Y., et al: ‘Compact, highly efficient, and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body-area networks’, IEEE Trans. Biomed. Circuits Syst., 2017, 11, (4), pp. 920932.
    3. 3)
      • 37. Specification Sheet – Felt Sheet RS Components Inc., 2013.
    4. 4)
      • 30. Dalia, M.N.E., Ahmed, M.S., Esmat, A.A.: ‘Low specific absorption rate hexa-band coplanar waveguide-fed planar inverted-F antenna with independent resonant frequency control for wireless communication applications’, IET Microw. Antennas Propag., 2014, 8, (4), pp. 207216.
    5. 5)
      • 20. Abirami, B.S., Esther, F.S.: ‘EBG-backed flexible printed Yagi-Uda antenna for on-body communication’, IEEE Trans. Antennas Propag., 2017, 65, (7), pp. 37623765.
    6. 6)
      • 9. Sherif, R.Z., Mahmoud, A.A., Abdelhamid, G.: ‘New thin wide-band bracelet-like antenna with low SAR for on-arm WBAN applications’, IET Microw. Antennas Propag., 2019, 13, (8), pp. 12191225.
    7. 7)
      • 19. Sherif, R.Z., Mahmoud, A.A., Abdelhamid, G.: ‘Time domain analysis for foldable thin UWB monopole antenna’, AEU-Int. J. Electron. Commun., 2018, 83, pp. 253262.
    8. 8)
      • 6. Sen, Y., Ping, J.S., Guy, A.E.V.: ‘Low-profile dual-band textile antenna with artificial magnetic conductor plane’, IEEE Trans. Antennas Propag., 2014, 62, (12), pp. 64876490.
    9. 9)
      • 26. Sultan, K.S., Abdullah, H.H., Abdallah, E.A., et al: ‘Low-SAR, miniaturized printed antenna for mobile, ISM, and WLAN services’, IEEE Antennas Wirel. Propag. Lett., 2013, 12, pp. 11061109.
    10. 10)
      • 16. Mohamed, E., Mahmoud, A.A., Hadia, M.E.: ‘Gain enhancement of a compact thin flexible reflector-based asymmetric meander line antenna with low SAR’, IET Microw., Antennas Propag., 2019, 13, (6), pp. 827832.
    11. 11)
      • 15. Simone, G., Filippo, C., Filippo, F., et al: ‘Wearable inkjet-printed wideband antenna by using miniaturized AMC for sub-GHz applications’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 19271930.
    12. 12)
      • 25. Liu, X.Y., Di, Y.H., Liu, H., et al: ‘A planar windmill-like broadband antenna equipped with artificial magnetic conductor for off-body communications’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 6467.
    13. 13)
      • 33. Dielectric properties of body tissues, available at http://niremf.ifac.cnr.it/tissprop/, accessed 15 November 2017.
    14. 14)
      • 3. Linda, A.Y.P., Ping, J.S., Sen, Y., et al: ‘A high-fidelity all-textile UWB antenna with low back radiation for off-body WBAN applications’, IEEE Trans. Antennas Propag., 2016, 64, (2), pp. 757760.
    15. 15)
      • 1. Peter, S.H., Yang, H.: ‘Antennas and propagation for body-centric wireless communications’ (Artech House, Norwood, MA, USA, 2012).
    16. 16)
      • 2. Gareth, A.C., William, G.S.: ‘Antennas for over body-surface comm. at 2.45 GHz’, IEEE Trans. Antennas Propag., 2009, 57, (4), pp. 844855.
    17. 17)
      • 31. Robin, A., Thierry, A., Thierry, S., et al: ‘Polymeric ferrite sheets for SAR reduction of wearable antennas’, Electron. Lett., 2010, 46, (3), pp. 197198.
    18. 18)
      • 10. Saud, M.S., Constantine, A.B., Craig, R.B., et al: ‘Wearable flexible reconfigurable antenna integrated with artificial magnetic conductor’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 23962399.
    19. 19)
      • 17. Mohamed, E., Mahmoud, A.A., Hadia, M.E.: ‘A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications’, IEEE Trans. Antennas Propag., 2019, 67, (10), pp. 63786388.
    20. 20)
      • 36. Specification Sheet – ShieldIt Super LessEMF Inc., 2013.
    21. 21)
      • 29. Sievenpiper, D.F., Zhang, L., Broas, R.F.J., et al: ‘High-impedance electromagnetic surfaces with a forbidden frequency band’, IEEE Trans. Microw. Theory Tech., 1999, 47, (11), pp. 20592074.
    22. 22)
      • 35. Density and mass of each organ tissue, available at http://bionumbers.hms.harvard.edu/bionumber.aspx?id=110245, accessed 15 November 2017.
    23. 23)
      • 21. Sangkil, K., Yu, -J.R., Hoseon, L., et al: ‘Monopole antenna with inkjet-printed EBG array on paper substrate for wearable applications’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 663666.
    24. 24)
      • 32. Omar, F.A., Mohamed, E., Mahmoud, A.A.: ‘A flexible high gain wide-band antenna for wireless and wearable applications’. 2018 IEEE Int. Symp. on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Italian National Research Council, Institute for Applied Physics, Florence, Italy, 2018, pp. 12791280.
    25. 25)
      • 8. Alemaryeen, A., Noghanian, S.: ‘Crumpling effects and specific absorption rates of flexible AMC integrated antennas’, IET Microw. Antennas Propag., 2018, 12, (4), pp. 627635.
    26. 26)
      • 5. Adel, Y.I.A., Zuhairiah, Z.A., Samsul, H.D., et al: ‘Compact and low-profile textile EBG-based antenna for wearable medical applications’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 25502553.
    27. 27)
      • 14. Haider, R.K., Ayman, I.A., Hussain, M.A., et al: ‘Flexible and compact AMC based antenna for telemedicine applications’, IEEE Trans. Antennas Propag., 2013, 61, (2), pp. 524531.
    28. 28)
      • 7. Sangeetha, V., Esther, F.S., Malathi, K., et al: ‘Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 249252.
    29. 29)
      • 28. Roy, B.V.B.S., Asimina, K., Karu, P.E.: ‘UWB wearable antenna with full ground plane based on PDMS-embedded conductive fabric’, IEEE Antennas Wirel. Propag. Lett., 2018, 17, (3), pp. 493496.
    30. 30)
      • 23. Agarwal, K., Guo, Y.X., Salam, B.: ‘Wearable AMC backed near-endfire antenna for on-body communications on latex substrate’, IEEE Trans. Compon. Packag. Manuf. Technol., 2016, 6, (3), pp. 346358.
    31. 31)
      • 34. Body tissue dielectric parameters, available at https://www.fcc.gov/general/body-tissue-dielectric-parameters, accessed 15 November 2017.
    32. 32)
      • 24. Chen, Y.S., Ku, T.Y.: ‘A low profile wearable antenna using a miniature high impedance surface for smartwatch applications’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 11441147.
    33. 33)
      • 18. Wang, M., Yang, Z., Wu, J., et al, ‘Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network’, IEEE Trans. Antennas Propag., 2018, 66, (6), pp. 30763086.
    34. 34)
      • 4. Sen, Y., Ping, J.S., Guy, A.E.V.: ‘Compact all-textile dual-band antenna loaded with metamaterial-inspired structure’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 14861489.
    35. 35)
      • 27. Faruqqque, M.R.I., Hossain, M.I., Islam, M.T.: ‘Low specific absorption rate microstrip patch antenna for cellular phone applications’, IET Microw., Antennas Propag., 2015, 9, (14), pp. 15401546.
    36. 36)
      • 13. Zhi, H.J., Donovan, E.B., Peter, E.S., et al: ‘A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices’, IEEE Trans. Antennas Propag., 2014, 62, (8), pp. 40214030.
    37. 37)
      • 12. Muhammad, A.B.A., Symeon, S.N., Marco, A.A., et al: ‘Compact EBG-backed planar monopole for BAN wearable applications’, IEEE Trans. Antennas Propag., 2017, 65, (2), pp. 453463.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.1089
Loading

Related content

content/journals/10.1049/iet-map.2019.1089
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address