access icon free Tripole type wideband bandpass frequency selective surface for X-band applications

The study presents a novel single dielectric layer wideband bandpass frequency selective surface (FSS) topology. The structure is designed using a kind of the tripole type FSS which has been analysed for its behaviour. Next, the operating bandwidth has been increased by using the meander lines in the middle of the unit-cell. The proposed FSS structure covers the X-band (45.03% fractional bandwidth) of the electromagnetic (EM) spectrum with a −3 dB transmission bandwidth. Its −1 dB bandwidth extends from 7.93 to 11.93 GHz. The wide operating bandwidth with a single dielectric layered structure makes it suitable for the hybrid radome applications. For the normally incident EM wave, adjacent to the lower and upper cut-off frequencies, the structure offers better than 18 dB attenuation which increases the out of the band rejection. Finally, the proposed structure is fabricated and experimentally verified for the dual polarisation and angle stability up to 45°. Eventually, to prove the novelty in terms of the operating bandwidth and the fabrication simplicity, an exhaustive state-of-the-art comparison is also presented.

Inspec keywords: microwave antennas; metamaterial antennas; radomes; microwave metamaterials; frequency selective surfaces

Other keywords: X-band applications; fractional bandwidth; band rejection; upper cut-off frequencies; single dielectric layered structure; meander lines; lower cut-off frequencies; angle stability; single dielectric layer; dual polarisation; tripole type FSS; hybrid radome applications; bandwidth 7.93 GHz to 11.93 GHz; unit-cell; frequency selective surface topology; tripole type wideband bandpass frequency selective surface; electromagnetic spectrum; wide operating bandwidth; normally incident EM wave; FSS structure; transmission bandwidth

Subjects: Metamaterials and structures (microwave); Antenna accessories; Single antennas

References

    1. 1)
      • 22. Yan, M., Qu, S., Wang, J., et al: ‘A miniaturized dual-band FSS with second-order response and large band separation’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 16021605.
    2. 2)
      • 23. Payne, K., Xu, K., Choi, J.H.: ‘Generalized synthesized technique for the design of thickness customizable high-order bandpass frequency-selective surface’, IEEE Trans. Microw. Theory Tech., 2018, 66, (11), pp. 47834793.
    3. 3)
      • 11. Lv, Q., Jin, C., Zhang, B., et al: ‘Wide-passband dual-polarized elliptic frequency selective surface’, IEEE Access, 2019, 7, pp. 5583355840.
    4. 4)
      • 25. Liu, N., Sheng, X., Zhang, C., et al: ‘Design of frequency selective surface structure with high angular stability for radome application’, IEEE Antennas Wirel. Propag. Lett., 2018, 17, (1), pp. 138141.
    5. 5)
      • 31. Torres, V., Orluno, R.-R., Ulibarri, P., et al: ‘Mid-infrared plasmonic inductors: enhancing inductance with meandering lines’, Sci. Rep., 2014, 4, p. 3592.
    6. 6)
      • 29. Narayan, S., Gulati, G., Sangeetha, B., et al: ‘Novel metamaterial-element-based FSS for airborne radome applications’, IEEE Trans. Antennas Propag., 2018, 66, (9), pp. 46954707.
    7. 7)
      • 33. Singh, C., Jha, K.R., Sharma, S.K.: ‘Transmission zero controlled wideband bandpass FSS’. IEEE Int. Microwave and RF Conf., Mumbai, India, 13–15 December, 2019.
    8. 8)
      • 6. Li, Y., Li, L., Zhang, Y., et al: ‘Design and synthesis of multilayer frequency selective surface based on antenna-filter-antenna using Minkowski fractal structures’, IEEE Trans. Antennas Propag., 2015, 63, (1), pp. 133141.
    9. 9)
      • 30. Jha, K.R., Mishra, G., Sharma, S.K.: ‘Analysis and design of a microwave absorber using non-resonance constituent parameter retrieval method for wireless communication applications’, IET Microw. Antennas Propag., 2018, 12, (6), pp. 977985.
    10. 10)
      • 12. Zhu, J., Tang, W., Wang, C., et al: ‘Dual-polarized bandpass frequency-selective surface with quasi-elliptic response based on square coaxial waveguide’, IEEE Trans. Antennas Propag., 2018, 66, (3), pp. 13311339.
    11. 11)
      • 24. Al-Joumayly, M., Behdad, N.: ‘A new technique for design of low-profile second-order bandpass frequency selective surfaces’, IEEE Trans. Antennas Propag., 2009, 57, (2), pp. 452459.
    12. 12)
      • 14. Behdad, N., Al-Joumayly, M., Salehi, M.: ‘A low-profile third order bandpass frequency selective surface’, IEEE Trans. Antennas Propag., 2009, 57, (2), pp. 460466.
    13. 13)
      • 2. Mittra, R., Chan, C., Cwik, T.: ‘Techniques for analyzing frequency selective surfaces – a review’, Proc. IEEE, 1988, 76, (12), pp. 15931615.
    14. 14)
      • 10. Chen, Q., Sang, D., Guo, M., et al: ‘Miniaturized frequency-selective rasorber with a wide transmission band using circular spiral resonator’, IEEE Trans. Antennas Propag., 2019, 67, (2), pp. 10451052.
    15. 15)
      • 7. Amin, S.M., Abadi, M.H., Li, M., et al: ‘Harmonic-suppressed miniaturized-element frequency selective surfaces with higher order bandpass responses’, IEEE Trans. Antennas Propag., 2014, 62, (5), pp. 25622571.
    16. 16)
      • 15. Zhong, T., Zhang, H., Min, X.-L., et al: ‘Wideband frequency selective surface with a sharp band edge based o mushroom-like cavity’, Prog. Electromagn. Res. Lett., 2016, 62, pp. 105110.
    17. 17)
      • 13. Rashid, A.K., Li, B., Shen, Z.: ‘An overview of three-dimensional frequency-selective structures’, IEEE Antenna Propag. Mag., 2014, 56, (3), pp. 4367.
    18. 18)
      • 32. Li, W., Li, Y.: ‘A high selectivity, miniaturized low profile dual-band bandpass FSS with a controllable transmission zero’, Int. J. Antennas. Propag., 2017, 2017, pp. 19, Article ID 7983567.
    19. 19)
      • 18. Li, D., Li, T.-W., Hao, R., et al: ‘A low-profile broadband bandpass frequency selective surface with two rapid band edges for 5G near-field applications’, IEEE Trans. Electromagn. Compat., 2017, 59, (2), pp. 670676.
    20. 20)
      • 8. Al-Sheikh, A., Shen, Z.: ‘Design of wideband bandstop frequency selective structures using stacked parallel strip line arrays’, IEEE Trans. Antennas Propag., 2016, 64, (8), pp. 34013409.
    21. 21)
      • 20. Ma, Y., Wu, W., Yuan, Y., et al: ‘A wideband FSS based on vias for communication systems’, IEEE Antennas Wirel. Propag. Lett., 2018, 17, (12), pp. 25172520.
    22. 22)
      • 21. Liu, X., Wang, Q., Zhang, W., et al: ‘On the improvement of angular stability of the 2nd-order miniaturized FSS structure’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 826829.
    23. 23)
      • 27. Zhao, P.-C., Zong, Z.-Y., Wu, W., et al: ‘Miniaturized-element bandpass FSS by loading capacitive structures’, IEEE Trans. Antennas Propag., 2019, 67, (5), pp. 35393544.
    24. 24)
      • 28. Jin, C., Lv, Q., Wang, J., et al: ‘Capped dielectric inserted perforated metallic plate bandpass frequency selective surface’, IEEE Trans. Antennas Propag., 2017, 65, (12), pp. 71297136.
    25. 25)
      • 16. Yang, L.-L., Wei, X.-C., Yi, D., et al: ‘A bandpass frequency selective surface with a low cross-polarization based on cavities with a hybrid boundary’, IEEE Trans. Antennas Propag., 2017, 65, (2), pp. 654661.
    26. 26)
    27. 27)
      • 3. Jha, K.R., Singh, G., Jyoti, R.: ‘A simple synthesis technique of single-square-loop frequency selective surface’, Prog. Electromagn. Res. B, 2012, 45, pp. 165185.
    28. 28)
      • 19. Zhou, H., Qu, S., Wang, J., et al: ‘Ultra-wideband frequency selective surface’, Electron. Lett., 2012, 48, (1), pp. 1113.
    29. 29)
      • 4. Panvar, R., Lee, J.R.: ‘Progress in frequency selective surface-based smart electromagnetic structures: a critical review’, Aerosp. Sci. Technol., 2017, 66, pp. 216223.
    30. 30)
      • 26. Zhao, P.-C., Zong, Z.-Y., Wu, W., et al: ‘A convoluted structure for miniaturized frequency selective surface and its equivalent circuit for optimization design’, IEEE Trans. Antennas Propag., 2016, 64, (7), pp. 29632970.
    31. 31)
      • 17. Ma, Y., Wu, W., Yuan, Y., et al: ‘High-selective frequency selective surface with hybrid unit cells’, IEEE Access, 2018, 6, pp. 7525975267.
    32. 32)
      • 1. Munk, B.A.: ‘Frequency selective surfaces: theory and design’ (John Wiley and Sons, New York, USA, 2005).
    33. 33)
      • 5. Costa, F., Kazemzadeh, A., Genovesi, S., et al: ‘Electro-magnetic absorbers based on frequency selective surfaces’, Forum Electromagn. Res. Methods Appl. Technol., 2016, 37, (1), pp. 123.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.1028
Loading

Related content

content/journals/10.1049/iet-map.2019.1028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading