access icon free Low-loss ultra-wideband beam switching metasurface antenna in X-band

This study proposes an ultra-wideband (UWB) metasurface-based beam-switching antenna system. A coplanar (CP) waveguide fed slot antenna (with 49% operating bandwidth) is coupled with a hexagonal metallic aperture to generate CP beam in the 10.2–10.8 GHz band. An octagonal split ring inclusion-based meta-element is designed to achieve 2π transmission phase variation with near-unity magnitude. The principle of the Pancharatnam–Berry metasurface is used to design an offset metasurface superstrate for tilting the main beam of the UWB antenna for the CP band. Measured results (S 11, axial ratio, and radiation pattern) agree well with full-wave simulations. The fabricated X-band UWB aperture coupled antenna system uses the metasurface superstrate to achieve a broadside beam for the lower band and tilted beam for the upper band. This antenna system holds promise for next-generation vehicular and satellite communication applications.

Inspec keywords: slot antenna arrays; microwave metamaterials; ultra wideband antennas; aperture-coupled antennas; metamaterial antennas; antenna radiation patterns; coplanar waveguide components; microwave antenna arrays; antenna feeds

Other keywords: broadside beam; CP band; low-loss ultra-wideband beam switching metasurface antenna; offset metasurface superstrate; octagonal split ring inclusion-based meta-element; CP beam; Pancharatnam-Berry metasurface; coplanar waveguide fed slot antenna; 2π transmission phase variation; UWB antenna; frequency 10.2 GHz to 10.8 GHz; satellite communication; next generation vehicular communication; X-band UWB aperture coupled antenna system; ultra-wideband metasurface-based beam-switching antenna system; hexagonal metallic aperture

Subjects: Antenna arrays; Metamaterials and structures (microwave); Antenna accessories; Waveguide and microwave transmission line components

References

    1. 1)
      • 17. Nakano, H., Mitsui, S., Yamauchi, J.: ‘Tilted-beam high gain antenna system composed of a patch antenna and periodically arrayed loops’, IEEE Trans. Antennas Propag., 2014, 62, (6), pp. 29172925.
    2. 2)
      • 21. Katare, K.K., Biswas, A., Akhtar, M.J.: ‘Microwave beam steering of planar antennas by hybrid phase gradient metasurface structure under spherical wave illumination’, J. Appl. Phys., 2017, 122, (23), p. 234901.
    3. 3)
      • 15. Swain, R., Mishra, R.K.: ‘Metasurface cavity antenna for broadband high-gain circularly polarized radiation’, Int. J. RF Microw. Comput. Aided Eng., 2019, 29, (3), p. e21609.
    4. 4)
      • 16. Gagnon, N., Petosa, A.: ‘Using rotatable planar phase shifting surfaces to steer a high-gain beam’, IEEE Trans. Antennas Propag., 2013, 61, (6), pp. 30863092.
    5. 5)
      • 18. Afzal, M.U., Esselle, K.P.: ‘Steering the beam of medium-to-high gain antennas using near-field phase transformation’, IEEE Trans. Antennas Propag., 2017, 65, (4), pp. 16801690.
    6. 6)
      • 3. Fusco, V.F.: ‘Mechanical beam scanning reflectarray’, IEEE Trans. Antennas Propag., 2005, 53, (11), pp. 38423844.
    7. 7)
      • 4. Nicholls, J.G., Hum, S.V.: ‘Full-space electronic beam-steering transmitarray with integrated leaky-wave feed’, IEEE Trans. Antennas Propag., 2016, 64, (8), pp. 34103422.
    8. 8)
      • 1. DeLuca, A.J.E.G.Sr, Thomas, D.L., Landry, N.R., et al: ‘Phased array antenna with distributed beam steering’, United States US5339086A, 1994.
    9. 9)
      • 2. Sievenpiper, D.F., Schaffner, J.H., Song, H.J., et al: ‘Two-dimensional beam steering using an electrically tunable impedance surface’, IEEE Trans. Antennas Propag., 2003, 51, (10), pp. 27132722.
    10. 10)
      • 10. Guzmán-Quirós, R., Weily, A.R., Gómez-Tornero, J.L., et al: ‘A Fabry–Pérot antenna with two-dimensional electronic beam scanning’, IEEE Trans. Antennas Propag., 2016, 64, (4), pp. 15361541.
    11. 11)
      • 12. Mohammadi Estakhri, N., Alù, A.: ‘Wave-front transformation with gradient metasurfaces’, Phys. Rev. X, 2016, 6, (4), p. 041008.
    12. 12)
      • 11. Zhang, J., Lei Mei, Z., Ru Zhang, W., et al: ‘An ultrathin directional carpet cloak based on generalized Snell's law’, Appl. Phys. Lett., 2013, 103, (15), p. 151115.
    13. 13)
      • 14. Badawe, M.E., Almoneef, T.S., Ramahi, O.M.: ‘A true metasurface antenna’, Sci. Rep., 2016, 6, p. 19268.
    14. 14)
      • 13. Swain, R., Mishra, R.K.: ‘Phase quantized metasurface supercells for wave manipulation and RCS reduction’, Prog. Electromagn. Res., 2018, 74, pp. 125135.
    15. 15)
      • 9. Costa, F., Monorchio, A.: ‘Design of subwavelength tunable and steerable Fabry-Perot/leaky wave antennas’, Prog. Electromagn. Res., 2011, 111, pp. 467481.
    16. 16)
      • 8. Ghasemi, A., Burokur, S.N., Dhouibi, A., et al: ‘High beam steering in Fabry–Pérot leaky-wave antennas’, IEEE Antennas Wirel. Propag. Lett., 2013, 12, pp. 261264.
    17. 17)
      • 7. Sazegar, M., Zheng, Y., Kohler, C., et al: ‘Beam steering transmitarray using tunable frequency selective surface with integrated ferroelectric varactors’, IEEE Trans. Antennas Propag., 2012, 60, (12), pp. 56905699.
    18. 18)
      • 6. Reis, J.R., Caldeirinha, R.F.S., Hammoudeh, A., et al: ‘Electronically reconfigurable FSS-inspired transmitarray for 2-D beamsteering’, IEEE Trans. Antennas Propag., 2017, 65, (9), pp. 48804885.
    19. 19)
      • 5. Matos, S.A., Lima, E.B., Silva, J.S., et al: ‘High gain dual-band beam-steering transmit array for satcom terminals at Ka-band’, IEEE Trans. Antennas Propag., 2017, 65, (7), pp. 35283539.
    20. 20)
      • 19. Ratni, B., Merzouk, W.A., de Lustrac, A., et al: ‘Design of phase-modulated metasurfaces for beam steering in Fabry–Perot cavity antennas’, IEEE Antennas Wirel. Propag. Lett., 2016, 16, pp. 14011404.
    21. 21)
      • 22. Yu, J., Jiang, W., Gong, S.: ‘Low RCS beam-steering antenna based on reconfigurable phase gradient metasurface’, IEEE Antennas Wirel. Propag. Lett., 2019, 18, pp. 20162020.
    22. 22)
      • 20. Hongnara, T., Chaimool, S., Akkaraekthalin, P., et al: ‘Design of compact beam-steering antennas using a metasurface formed by uniform square rings’, IEEE Access, 2018, 6, pp. 94209429.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0994
Loading

Related content

content/journals/10.1049/iet-map.2019.0994
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading