Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Artificial neural network models for radiowave propagation in tunnels

The authors present a machine learning approach for the extraction of radiowave propagation models in tunnels. To that end, they discuss three challenges related to the application of machine learning to general wireless propagation problems: how to efficiently specify the input to the model, which learning method to use and what output functions to seek. The input that any propagation modelling tool (be it a ray-tracer, a full-wave method or a parabolic equation solver) uses, can be considered as visual, in the form of an image or a point cloud of the environment under consideration. Therefore, they propose an artificial neural network structure that generalises well to various geometries. The desired output can be values of the electromagnetic field components across the channel or just a path loss model. They apply these ideas to the case of arched tunnels for the first time. They consider cases where the geometric parameters of the tunnel, the position of the receiver and the frequency of operation are parts of a model trained by a vector parabolic equation solver. The model is evaluated using solver-generated as well as measured data. The numerical results demonstrate that this approach combines computational efficiency with high accuracy.

References

    1. 1)
      • 18. Neskovic, A., Neskovic, N., Paunovic, G.: ‘Modern approaches in modeling of mobile radio systems propagation environment’, IEEE Commun. Surv. Tutor., 2000, 3, (3), pp. 212.
    2. 2)
      • 13. Popov, A.V., Vinogradov, V.A., Zhu, N.Y., et al: ‘3D parabolic equation model of em wave propagation in tunnels’, Electron. Lett., 1999, 35, (11), pp. 880882.
    3. 3)
      • 32. Friedman, J.: ‘Greedy function approximation: a gradient boosting machine’. The Annals of Statistics, 2000, 29, pp. 11891232.
    4. 4)
      • 35. Rosenblatt, F.F.: ‘The perceptron: a probabilistic model for information storage and organization in the brain’, Psychol. Rev., 1958, 65, (6), pp. 386408.
    5. 5)
      • 4. Sood, N., Sarris, C.D.: ‘Enabling accurate propagation modeling of complex tunnel geometries with ray-tracing’. 2017 IEEE Int. Symp. on Antennas and Propagation USNC/URSI National Radio Science Meeting, San Diego, CA, USA., 2017, pp. 18271828.
    6. 6)
      • 7. MacKie-Mason, B., Shao, Y., Greenwood, A., et al: ‘Supercomputing-enabled first-principles analysis of radio wave propagation in urban environments’, IEEE Trans. Antennas Propag., 2018, 66, (12), pp. 66066617.
    7. 7)
      • 27. Sotiroudis, S., Siakavara, K., Sahalos, J.: ‘A neural network approach to the prediction of the propagation path-loss for mobile communications systems in urban environments’, PIERS Online, 2007, 3, pp. 11751179.
    8. 8)
      • 30. Sood, N., Ludwig, A., Zhang, X., et al: ‘Modeling and optimization of coverage in london underground subway tunnels’. 2015 IEEE Int. Symp. on Antennas and Propagation USNC/URSI National Radio Science Meeting, Vancouver, Canada, 2015, pp. 8788.
    9. 9)
      • 22. Ayadi, M., Ben Zineb, A., Tabbane, S.: ‘A uhf path loss model using learning machine for heterogeneous networks’, IEEE Trans. Antennas Propag., 2017, 65, (7), pp. 36753683.
    10. 10)
      • 16. Rappaport, T.S.: ‘Wireless communications: principles and practice’ (Prentice-Hall, New Jersey, USA., 1996).
    11. 11)
      • 37. Goodfellow, I., Bengio, Y., Courville, A.: ‘Deep learning’ (MIT Press, USA., 2016). Available at http://www.deeplearningbook.org.
    12. 12)
      • 8. Dudley, D.G., Lienard, M., Mahmoud, S.F., et al: ‘Wireless propagation in tunnels’, IEEE Antennas Propag. Mag., 2007, 49, (2), pp. 1126.
    13. 13)
      • 25. Zaarour, N., Affes, S., Kandil, N., et al: ‘Comparative study on a 60 ghz path loss channel modeling in a mine environment using neural networks’. 2015 IEEE Int. Conf. on Ubiquitous Wireless Broadband (ICUWB), Montreal, Canada, 2015, pp. 14.
    14. 14)
      • 17. Sarkar, T.K., Ji, Z., Kim, K., et al: ‘A survey of various propagation models for mobile communication’, IEEE Antennas Propag. Mag., 2003, 45, (3), pp. 5182.
    15. 15)
      • 20. Guan, K., Zhong, Z., Alonso, J.I., et al: ‘Measurement of distributed antenna systems at 2.4 ghz in a realistic subway tunnel environment’, IEEE Trans. Veh. Technol., 2012, 61, (2), pp. 834837.
    16. 16)
      • 9. Ramirez, L., Hasselmann, F., Zhang, Y.: ‘Channel characteristics in tunnels: FDTD simulations and measurement’, J. Microwaves Optoelectron. Electromagn. Appl., 2011, 10, pp. 121130.
    17. 17)
      • 12. Liu, Y., Ghazal, A., Wang, C.-X., et al: ‘Channel measurements and models for high-speed train wireless communication systems in tunnel scenarios: a survey’, Sci. China Inf. Sci., 2016, 60, p. 12.
    18. 18)
      • 33. Kingma, D., Ba, J.: ‘Adam: a method for stochastic optimization’. Int. Conf. on Learning Representations, San Diego, CA, USA., 12 2014.
    19. 19)
      • 11. Mahmoud, S.F., Wait, J.R.: ‘Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels’, Radio Sci., 1974, 9, (12), pp. 11471158.
    20. 20)
      • 34. Abu-Mostafa, Y., Magdon-Ismail, M., Lin, H.: Deep Learning From Data. AMLBook, USA., 2012, Available at https://work.caltech.edu/textbook.html.
    21. 21)
      • 26. Sotiroudis, S.P., Goudos, S.K., Gotsis, K.A., et al: ‘Modeling by optimal artificial neural networks the prediction of propagation path loss in urban environments’. 2013 IEEE-APS Topical Conf. on Antennas and Propagation in Wireless Communications (APWC), Torino, Italy, 2013, pp. 599602.
    22. 22)
      • 15. Zhang, X., Sood, N., Siu, J.K., et al: ‘A hybrid ray-tracing/vector parabolic equation method for propagation modeling in train communication channels’, IEEE Trans. Antennas Propag., 2016, 64, (5), pp. 18401849.
    23. 23)
      • 1. Sood, N., Baroudi, S., Zhang, X., et al: ‘Integrating physics-based wireless propagation models and network protocol design for train communication systems’, IEEE Trans. Antennas Propag., 2018, 66, (12), pp. 66356645.
    24. 24)
      • 3. Zhang, Y.P., Hwang, Y., Kouyoumjian, R.G.: ‘Ray-optical prediction of radio-wave propagation characteristics in tunnel environments. 2. analysis and measurements’, IEEE Trans. Antennas Propag., 1998, 46, (9), pp. 13371345.
    25. 25)
      • 24. Ostlin, E., Zepernick, H., Suzuki, H.: ‘Macrocell path-loss prediction using artificial neural networks’, IEEE Trans. Veh. Technol., 2010, 59, (6), pp. 27352747.
    26. 26)
      • 6. Zhang, X., Sarris, C.D.: ‘A gaussian beam approximation approach for embedding antennas into vector parabolic equation-based wireless channel propagation models’, IEEE Trans. Antennas Propag., 2017, 65, (3), pp. 13011310.
    27. 27)
      • 10. Hrovat, A., Kandus, G., Javornik, T.: ‘A survey of radio propagation modeling for tunnels’, IEEE Commun. Surv. Tutor., 2014, 16, (2), pp. 658669.
    28. 28)
      • 31. Zhang, X., Sarris, C.D.: ‘Enabling accurate modeling of wave propagation in complex tunnel environments with the vector parabolic equation method’. 2018 IEEE Int. Symp. on Antennas and Propagation USNC/URSI National Radio Science Meeting, Boston, MA, USA., 2018, pp. 549550.
    29. 29)
      • 36. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: ‘Learning representations by back-propagating errors’, Nature, 1986, 323, pp. 533536.
    30. 30)
      • 2. Catedra, M., Perez, J.: ‘Cell planning for wireless communications’ (Artech House, Inc., USA., 1999).
    31. 31)
      • 29. Bhuvaneshwari, A., Hemalatha, R., Satyasavithri, T.: ‘Performance evaluation of dynamic neural networks for mobile radio path loss prediction’. 2016 IEEE Uttar Pradesh Section Int. Conf. on Electrical, Computer and Electronics Engineering (UPCON), Varanasi, India, 2016, pp. 461466.
    32. 32)
      • 28. Gschwendtner, B., Landstorfer, F.: ‘Adaptive propagation modelling based on neural network techniques’. Proc. of Vehicular Technology Conf. - VTC, Atlanta, GA, USA., 1996, vol. 2, pp. 623626.
    33. 33)
      • 21. Isabona, J., Srivastava, V.M.: ‘Hybrid neural network approach for predicting signal propagation loss in urban microcells’. 2016 IEEE Region 10 Humanitarian Technology Conf. (R10-HTC), Agra, India, 2016, pp. 15.
    34. 34)
      • 19. Molisch, A.: ‘Wireless communications’ (Wiley-IEEE Press, USA., 2010).
    35. 35)
      • 23. Popescu, I., Nafomita, I., Constantinou, P., et al: ‘Neural networks applications for the prediction of propagation path loss in urban environments’. Proc. IEEE VTS 53rd Vehicular Technology Conf. Proc. (Cat. No.01CH37202), Rhodes, Greece, 2001, vol. 1, pp. 387391.
    36. 36)
      • 14. Zhang, Y.P.: ‘Novel model for propagation loss prediction in tunnels’, IEEE Trans. Veh. Technol., 2003, 52, (5), pp. 13081314.
    37. 37)
      • 5. Bernardi, P., Caratelli, D., Cicchetti, R., et al: ‘A numerical scheme for the solution of the vector parabolic equation governing the radio wave propagation in straight and curved rectangular tunnels’, IEEE Trans. Antennas Propag., 2009, 57, (10), pp. 32493257.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0988
Loading

Related content

content/journals/10.1049/iet-map.2019.0988
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address