access icon free System development and experimental validation of a long-range VNA-based channel sounder

In a wireless communication system, the radio propagation channel is a complicated component to characterise. Channel sounding equipment thus has to meet specific criteria to extract the desired channel parameters. In this study, the authors outline the development and validation of a vector network analyser (VNA) based channel sounder for the frequency range from 1 to 50 GHz using radio-over-fibre techniques. Three methods of de-embedding phase errors due to hardware impairments are demonstrated and validated via back-to-back measurements. The bidirectional scheme utilising optical circulators is shown to have a superior performance over the two-branch unidirectional and the two-branch bidirectional schemes. Therefore, the bidirectional scheme utilising optical circulators is proposed to achieve a long-range ultra-channel sounder based on the VNA.

Inspec keywords: network analysers; wireless channels; radio-over-fibre; millimetre wave propagation; optical circulators

Other keywords: long-range ultra-channel sounder; channel parameters; hardware impairments; complicated component; two-branch unidirectional schemes; two-branch bidirectional schemes; radio-over-fibre techniques; vector network analyser; long-range VNA-based channel sounder; optical circulators; channel sounding equipment; de-embedding phase errors; back-to-back measurements; radio propagation channel; wireless communication system; frequency 1.0 GHz to 50.0 GHz

Subjects: Radiowave propagation; Optical communication equipment; Optical waveguides; Network and spectrum analysers; Microwave photonics

References

    1. 1)
      • 17. Salous, S.: ‘FMCW channel sounder with digital processing for measuring the coherence of wideband HF radio links’, IEE Proc. F, Commun. Radar Signal Process., 1986, 133, (5), pp. 456462.
    2. 2)
      • 12. Nielsen, J.O., Fan, W., Eggers, P.C.F., et al: ‘A channel sounder for massive MIMO and MmWave channels’, IEEE Commun. Mag., 2018, 56, (12), pp. 6773.
    3. 3)
      • 16. Mutagi, R.N.: ‘Pseudo noise sequences for engineers’, Electron. Commun. Eng. J., 1996, 8, (2), pp. 7987.
    4. 4)
      • 2. Molisch, A.F.: ‘Ultrawideband propagation channels-theory, measurement, and modeling’, IEEE Trans. Veh. Technol., 2005, 54, (5), pp. 15281545.
    5. 5)
      • 31. Caudill, D., Papazian, P.B., Gentile, C., et al: ‘Omnidirectional channel sounder with phased-arrayAntennas for 5G mobile communications’, IEEE Trans. Microw. Theory Techn., 2019, 67, (7), pp. 29362945.
    6. 6)
      • 4. He, R., Ai, B., Stüber, G.L., et al: ‘Geometrical-based modeling for millimeter-wave MIMO mobile-to-mobile channels’, IEEE Trans. Veh. Technol., 2018, 67, (4), pp. 28482863.
    7. 7)
      • 14. Muller, R., Hafner, S., Dupleich, D., et al: ‘Ultra-wideband channel sounder for measurements at 70 GHz’. Proc. IEEE 81st Veh. Technol. Conf. (VTC Spring), Glasgow, UK, 2015, pp. 15.
    8. 8)
      • 27. Hejselbaek, J., Ji, Y., Fan, W., et al: ‘Channel sounding system for MM-wave bands and characterization of indoor propagation at 28 GHz’, Int. J. Wirel. Inf. Netw., 2017, 24, (3), pp. 204216.
    9. 9)
      • 9. Fuschini, F., Häfner, S., Zoli, M., et al: ‘Analysis of in-room mm-wave propagation: directional channel measurements and ray tracing simulations’, J Infrared, Millimeter, Terahertz Waves, 2017, 38, (6), pp. 727744.
    10. 10)
      • 23. Zetik, R., Kmec, M., Sachs, J., et al: ‘Real-Time MIMO Channel Sounder for Emulation of Distributed Ultrawideband Systems’, Int. J. Antennas Propag., 2014, 2014, p. 317683.
    11. 11)
      • 34. Quimby, J., Michelson, D.G., Bennai, M., et al: ‘Interlaboratory millimeter-wave channel sounder verification’. Proc. 13th European Conf. on Antennas and Propagation (EuCAP), Krakow, Poland, 2019, pp. 15.
    12. 12)
      • 7. Ghosh, S., Sen, D.: ‘An inclusive survey on array antenna design for millimeter-wave communications’, IEEE Access, 2019, 7, pp. 8313783161.
    13. 13)
      • 19. Bas, C.U., Wang, R., Sangodoyin, S., et al:‘Real-time millimeter-wave MIMO channel sounder for dynamic directional measurements’, IEEE Trans. Veh. Technol., 2019, 68, (9), pp. 87758789.
    14. 14)
      • 36. Lewandowski, A., Wiatr, W., Gu, D., et al: ‘A multireflect-thru method of vector network analyzer calibration’, IEEE Trans. Microw. Theory Techn., 2017, 65, (3), pp. 905915.
    15. 15)
      • 37. Roman, J.E., Frankel, M.Y., Williams, K.J., et al: ‘Temperature and strain gradient effects on optical fiber cables for phased-array antennas’. Proc. Opt. Fiber Commun. Conf., Dallas, TX, USA, 1997, p. 171.
    16. 16)
      • 29. Mbugua, A.W., Fan, W., Olesen, K., et al: ‘Phase-compensated optical fiber-based ultrawideband channel sounder’, IEEE Trans. Microw. Theory Techn, 2020, 68, pp. 636647.
    17. 17)
      • 28. Liya, B.N., Michelson, D.G: ‘Characterization of multipath persistence in device-to-device scenarios at 30 GHz’. Proc. IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 2016, pp. 16.
    18. 18)
      • 6. Zhao, X., Li, S., Wang, Q., et al: ‘Channel measurements, modeling, simulation and validation at 32 GHz in outdoor microcells for 5G radio systems’, IEEE Access, 2017, 5, pp. 10621072.
    19. 19)
      • 21. Papazian, P.B., Gentile, C., Remley, K.A., et al: ‘A radio channel sounder for mobile millimeter-wave communications: system implementation and measurement assessment’, IEEE Trans. Microw. Theory Techn., 2016, 64, (9), pp. 29242932.
    20. 20)
      • 32. Peter, M., Weiler, R.J., Keusgen, W., et al: ‘Characterization of mm-wave channel sounders up to W-band and validation of measurement results’. Proc. 10th European Conf. on Antennas and Propagation (EuCAP), Davos, Switzerland, 2016, pp. 15.
    21. 21)
      • 38. Haneda, K., Nguyen, S.L.H., Järveläinen, J., et al: ‘Estimating the omni-directional pathloss from directional channel sounding’. Proc. 10th European Conf. Antennas Propagation (EuCAP), Davos, Switzerland, 2016, pp. 15.
    22. 22)
      • 1. Guan, K., Ai, B., Peng, B., et al: ‘Towards realistic high-speed train channels at 5G millimeter-wave band—part I: paradigm, significance analysis, and scenario reconstruction’, IEEE Trans. Veh. Technol., 2018, 67, (10), pp. 91129128.
    23. 23)
      • 30. Li, J., Zhao, Y., Tao, C., et al: ‘System design and calibration for wideband channel sounding with multiple frequency bands’, IEEE Access, 2017, 5, pp. 781793.
    24. 24)
      • 20. MacCartney, G.R., Rappaport, T.S.: ‘A flexible millimeter-wave channel sounder with absolute timing’, IEEE J. Sel. Areas Commun., 2017, 35, (6), pp. 14021418.
    25. 25)
      • 15. Pirkl, R.J., Durgin, G.D.: ‘Optimal sliding correlator channel sounder design’, IEEE Trans Wireless Commun, 2008, 7, (9), pp. 34883497.
    26. 26)
      • 26. Fan, W., Mbugua, A.W., Cai, X., et al: ‘Development and experimental validation of an ultra-wideband channel sounder’. Proc. 13th European Conf. on Antennas and Propagation (EuCAP), Krakow, Poland, 2019, pp. 15.
    27. 27)
      • 33. Dortmans, J.N.H., Quimby, J.T., Remley, K.A., et al: ‘Design of a portable verification artifact for millimeter-wave-Frequency channel sounders’, IEEE Trans. Antennas Propag., 2019, 67, (9), pp. 61496158.
    28. 28)
      • 35. Remley, K.A., Gentile, C., Zajic, A., et al: ‘Methods for channel sounder measurement verification’. Proc. IEEE 86th Vehicular Technology Conf. (VTC-Fall), Toronto, Canada, 2017, pp. 14.
    29. 29)
      • 18. Im, Y., Ali, M., Park, S.: ‘Slow modulation behavior of the FMCW radar for wireless channel sounding technology’, IEEE Trans. Electromagn. Compat., 2014, 56, (5), pp. 12291237.
    30. 30)
      • 8. Kyösti, P., Lehtomäki, J., Medbo, J., et al: ‘Map-based channel model for evaluation of 5G wireless communication systems’, IEEE Trans. Antennas Propag., 2017, 65, (12), pp. 64916504.
    31. 31)
      • 3. Witrisal, K., Meissner, P., Leitinger, E., et al: ‘High-accuracy localization for assisted living: 5G systems will turn multipath channels from foe to friend’, IEEE Signal Process Mag, 2016, 33, (2), pp. 5970.
    32. 32)
      • 5. He, R., Schneider, C., Ai, B., et al: ‘Propagation channels of 5G millimeter wave vehicle-to-vehicle communications: recent advances and future challenges’, IEEE Veh. Technol. Mag., 2020, 15, pp. 1626.
    33. 33)
      • 10. Fan, W., Carton, I., Kyösti, P., et al: ‘Emulating ray-tracing channels in multiprobe anechoic chamber setups for virtual drive testing’, IEEE Trans. Antennas Propag., 2016, 64, (2), pp. 730739.
    34. 34)
      • 24. Mbugua, A.W., Fan, W., Ji, Y., et al: ‘Millimeter wave multi-user performance evaluation based on measured channels with virtual antenna array channel sounder’, IEEE Access, 2018, 6, pp. 1231812326.
    35. 35)
      • 25. Medbo, J., Asplund, H., Berg, J.: ‘60 GHz channel directional characterization using extreme size virtual antenna array’. Proc. IEEE 26th Annu. Int. Symp. Personal Indoor, Mobile Radio Commun. (PIMRC), Hong Kong, China, 2015, pp. 176180.
    36. 36)
      • 13. Thoma, R.S., Hampicke, D., Richter, A., et al:‘Identification of time-variant directional mobile radio channels’, IEEE Trans. Instrum. Meas., 2000, 49, (2), pp. 357364.
    37. 37)
      • 11. Ji, Y., Fan, W., Pedersen, G.F., et al: ‘On channel emulation methods in multiprobe anechoic chamber setups for over-the-air testing’, IEEE Trans. Veh. Technol., 2018, 67, (8), pp. 67406751.
    38. 38)
      • 22. Salous, S., Feeney, S.M., Raimundo, X., et al: ‘Wideband MIMO channel sounder for radio measurements in the 60 GHz band’, IEEE Trans. Wirel. Commun., 2016, 15, (4), pp. 28252832.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0923
Loading

Related content

content/journals/10.1049/iet-map.2019.0923
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading