Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Filtering Doherty power amplifier

At present, it is a trend in wireless communication to integrate conventional separate components into a single one for further miniaturisation and whole performance optimisation. In this study, a novel filtering Doherty power amplifier topology is proposed, which incorporates a bandpass power divider for power division. The power divider is characterised by third-order bandpass response and good out-of-band performance, and then it can purify the input spectrum for the whole amplifier. For demonstration, an example of this filtering Doherty power amplifier at 2.0 GHz was designed, fabricated and measured. The measured results show that at least 21 dB of the out-of-band suppression is obtained up to fourth harmonic for purifying the input spectrum. Meanwhile, high back-off efficiency is still retained for this filtering Doherty power amplifier.

References

    1. 1)
      • 19. Kim, J.: ‘Analysis and design optimisation for inverse class-F GaN Doherty amplifier’, IET Microw. Antennas Propag., 2019, 13, (4), pp. 448454.
    2. 2)
      • 3. Lee, H.: ‘Optimized current of the peaking amplifier for two-stage Doherty power amplifier’, IEEE Trans. Microw. Theory Tech., 2017, 65, (1), pp. 209217.
    3. 3)
      • 12. Lee, Y., Lee, M., Jeong, Y., et al: ‘Highly linear power tracking Doherty amplifier for WCDMA repeater applications’, IEEE Microw. Wirel. Compon. Lett., 2008, 18, (7), pp. 485487.
    4. 4)
      • 17. Kang, H.: ‘Octave bandwidth Doherty power amplifier using multiple resonance circuit for the peaking amplifier’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2019, 66, (2), pp. 583593.
    5. 5)
      • 21. Kuo, L., Min, W., Brain, A., et al: ‘Proton radiation response of monolithic millimeter-wave transceiver building blocks implemented in 200 GHz SiGe technology’, IEEE Trans. Nucl. Sci., 2004, 51, (6), pp. 37813787.
    6. 6)
      • 10. Naah, G., He, S., Shi, S., et al: ‘Harmonic-tuned continuum mode active load modulation output combiner for the design of broadband asymmetric Doherty power amplifiers’, IET Microw. Antennas Propag., 2019, 13, (8), pp. 12261234.
    7. 7)
      • 25. Guo, Q., Zhang, X., Xu, J., et al: ‘Bandpass Class-F power amplifier based on multifunction hybrid cavity–microstrip filter’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 64, (7), pp. 742746.
    8. 8)
      • 5. Kim, J., Cha, J., Kim, I., et al: ‘Optimum operation of asymmetrical-cells-based linear Doherty power amplifiers-uneven power drive and power matching’, IEEE Trans. Microw. Theory Tech., 2005, 53, (5), pp. 18021809.
    9. 9)
      • 2. Shi, W., He, S., Gideon, N., et al: ‘Extending high-efficiency power range of symmetrical Doherty power amplifiers by taking advantage of peaking stage’, IET Microw. Antennas Propag., 2017, 11, (9), pp. 12961302.
    10. 10)
      • 23. Gebhard, A., Oliver, L., Machael, L., et al: ‘A robust nonlinear RLS type adaptive filter for second-order-intermodulation distortion cancellation in FDD LTE and 5G direct conversion transceivers’, IEEE Trans. Microw. Theory Tech., 2019, 67, (5), pp. 19461961.
    11. 11)
      • 20. Kim, J.: ‘2.4 GHz class-F−1 GaN Doherty amplifier with efficiency enhancement technique’, IEEE Microw. Wirel. Compon. Lett., 2018, 28, (1), pp. 3436.
    12. 12)
      • 1. Fang, X., Liu, H., Cheng, K., et al: ‘Two-way Doherty power am-plifier efficiency enhancement by incorporating transistors’ nonlinear phase distortion’, IEEE Microw. Wirel. Compon. Lett., 2018, 28, (2), pp. 168170.
    13. 13)
      • 28. Xu, J., Xiao, F., Cao, Y., et al: ‘Compact microstrip filter with third-order quasi-elliptic bandpass response’, IEEE Access, 2018, 6, pp. 6337563381.
    14. 14)
      • 16. Pang, J., He, S., Dai, Z., et al: ‘A post-matching Doherty power amplifier employing low-order impedance inverters for broadband applications’, IEEE Trans. Microw. Theory Tech., 2015, 63, (12), pp. 40614071.
    15. 15)
      • 7. Kim, I.: ‘Highly linear three-way Doherty amplifier with uneven power drive for repeater system’, IEEE Microw. Wirel. Compon. Lett., 2006, 16, (4), pp. 176178.
    16. 16)
      • 11. Chen, S., Wang, G., Cheng, Z., et al: ‘Adaptively biased 60-GHz Doherty power amplifier in 65-nm CMOS’, IEEE Microw. Wirel. Compon. Lett., 2017, 27, (3), pp. 296298.
    17. 17)
      • 4. Hasin, M., Kitchen, J.: ‘Optimized load trajectory for finite peaking off-state impedance-based Doherty power amplifiers’, IEEE Microw. Wirel. Compon. Lett., 2019, 29, (7), pp. 486488.
    18. 18)
      • 24. Chen, K., Lee, J., Chappell, W., et al: ‘Co-design of highly efficient power amplifier and high-Q output bandpass filter’, IEEE Trans. Microw. Theory Tech., 2013, 61, (11), pp. 39403950.
    19. 19)
      • 18. Zhou, X., Chan, W., Zheng, S., et al: ‘Broadband high efficiency post-matching Doherty power amplifier based on mixed-topology’. IEEE MTT-S Int. Microwave Symp.2018, pp. 450453.
    20. 20)
      • 26. Li, Y., Wu, K., Xue, Q., et al: ‘Power amplifier integrated with bandpass filter for long term evolution application’, IEEE Microw. Wirel. Compon. Lett., 2013, 23, (8), pp. 424426.
    21. 21)
      • 6. Moon, J., Kim, J., Kim, I., et al: ‘Highly efficient three-way saturated Doherty amplifier with digital feedback predistortion’, IEEE Microw. Wirel. Compon. Lett., 2008, 18, (8), pp. 539541.
    22. 22)
      • 9. Golestaneh, H., Malekzadeh, F., Boumaiza, S.: ‘An extended-bandwidth three-way Doherty power amplifier’, IEEE Trans. Microw. Theory Tech., 2013, 61, (9), pp. 33183328.
    23. 23)
      • 27. Zheng, S., Liu, Z., Pan, Y., et al: ‘Bandpass filtering Doherty power amplifier with enhanced efficiency and wideband harmonic suppression’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2016, 63, (3), pp. 337346.
    24. 24)
      • 22. Malocha, D., Fisher, B., Youngquist, R., et al: ‘Surface acoustic wave pulsed-correlator transceiver for aerospace applications’, IEEE Sensors J., 2014, 14, (11), pp. 37753781.
    25. 25)
      • 15. Pang, J., He, S., Dai, Z., et al: ‘Design of a post-matching asymmetric Doherty power amplifier for broadband applications’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (1), pp. 5254.
    26. 26)
      • 13. Park, Y., Lee, J., Kim, S., et al: ‘Analysis of average power tracking Doherty power amplifier’, IEEE Microw. Wirel. Compon. Lett., 2015, 25, (7), pp. 481483.
    27. 27)
      • 14. Cheng, Z., Xiong, G., Liu, Y., et al: ‘High-efficiency Doherty power amplifier with wide OPBO range for base station systems’, IET Microw. Antennas Propag., 2019, 13, (7), pp. 926929.
    28. 28)
      • 8. Kang, H.: ‘Symmetric three-way Doherty power amplifier for high efficiency and linearity’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 64, (8), pp. 862866.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0835
Loading

Related content

content/journals/10.1049/iet-map.2019.0835
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address