access icon free Efficient computation of the reduced matrix of MLFMA–CBFM for electrically large blocks

In recent years, the characteristic basis function method has been developed as an efficient approach for the solution of large electromagnetic radiation or scattering problems. According to this technique, the currents over the scenario under analysis are defined using a set of pre-computed characteristic basis functions, associated with a number of blocks into which the geometry is partitioned. This involves some computational advantages due to the reduction of the number of unknowns compared to conventional approaches. However, additional pre-processing time is introduced due to the computation of the CBFs and the reduced coupling matrix. A novel strategy is presented in this study in order to accelerate the generation of the reduced matrix, based on the application of the multilevel fast multipole algorithm.

Inspec keywords: electromagnetic wave scattering; computational geometry; computational electromagnetics; matrix algebra

Other keywords: MLFMA-CBFM; characteristic basis function method; electromagnetic radiation; electromagnetic scattering problem; precomputed characteristic basis functions; geometry; electrically large blocks; multilevel fast multipole algorithm; preprocessing time; reduced coupling matrix

Subjects: Linear algebra (numerical analysis); Linear algebra (numerical analysis); Electromagnetic wave propagation; Computational geometry; Electrical engineering computing; Algebra, set theory, and graph theory; Electromagnetic waves: theory

References

    1. 1)
      • 7. Harrington, R.F.: ‘Field computation by moment methods’ (McMillan, New York, 1968).
    2. 2)
      • 3. Jakobus, U., Landstorfer, F.M.: ‘Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape’, IEEE Trans. Antennas Propag., 1995, 43, pp. 162169.
    3. 3)
      • 14. Delgado, C., Catedra, F., Mittra, R.: ‘Application of the characteristic basis function method utilizing a class of basis and testing functions defined on NURBS patches’, IEEE Trans. Antennas Propag., 2008, 56, (3), pp. 784791.
    4. 4)
      • 9. Chew, W.C., Jin, J., Michielssen, E., et al: (Eds): ‘Fast and efficient algorithms in computational electromagnetics’ (Artech House, Norwood, MA, 2001).
    5. 5)
      • 24. García, E., Lozano, L., Algar, M.J., et al: ‘A study of the efficiency of the parallelization of a high frequency electromagnetic approach for the computation of radiation and scattering considering multiple bounces’, Comput. Phys. Commun., 2013, 184, (1), pp. 4550.
    6. 6)
      • 4. Thiele, G.A., Newhouse, G.A.: ‘A hybrid technique for combining moment methods with the geometrical theory of diffraction’, IEEE Trans Antennas Propag., 1975, 23, pp. 551558.
    7. 7)
      • 6. Ekelman, E.P., Thiele, G.A.: ‘A hybrid technique for combining the moment method treatment of wire antennas with the GTD for curved surfaces’, IEEE Trans. Antennas Propag., 1980, AP-28, pp. 831839.
    8. 8)
      • 12. Mittra, R., Du, K.: ‘Characteristic basis function method for iteration-free solution of large method of moments problem’, Prog. Electromagn. Res. B, 2008, 6, pp. 307336.
    9. 9)
      • 25. Lezar, E., Davidson, D.B.: ‘GPU-Accelerated Method of moments by example: monostatic scattering’, IEEE Trans. Antennas Propag., 2010, 52, (6), pp. 120135.
    10. 10)
      • 23. Ludick, D.J., Davidson, D.B.: ‘Investigating efficient parallelization techniques for the characteristic basis function method (CBFM)’. 2009 Int. Conf. on Electromagnetics in Advanced Applications (ICEAA 09), Torino, Italy, 2009.
    11. 11)
      • 16. Sleijpen, G.L.G., Fokkema, D.R.: ‘Bi-CGSTAB(l) for linear equations involving unsymmetric matrices with complex spectrum’, Electron. Trans. Numer. Anal., 1993, 1, pp. 1132.
    12. 12)
      • 26. Rivas, F., Valle, L., Cátedra, M.F.: ‘A moment method formulation for the analysis of wire antennas attached to arbitrary conducting bodies defined by parametric surfaces’, Appl. Comput. Electromagn. Soc. J., 1996, 11, (2), pp. 3239.
    13. 13)
      • 20. Gonzalez-Ovejero, D., Craeye, C.: ‘Interpolatory macro basis functions analysis of non-periodic arrays’, IEEE Trans. Antennas Propag., 2011, 59, (8), pp. 31173122.
    14. 14)
      • 1. McNamara, D.A., Pistorius, C.W.I., Maherbe, J.A.G.: ‘Introduction to the uniform geometric theory of diffraction’ (Artech House, Norwood, MA, 1990).
    15. 15)
      • 13. Prakash, V.V.S., Mittra, R.: ‘Characteristic basis function method: a new technique for efficient solution of method of moments matrix equation’, Microw. Opt. Technol. Lett., 2003, 36, (2), pp. 95100.
    16. 16)
      • 15. Saad, Y., Schultz, M.H.: ‘GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems’, SIAM J. Sci. Stat. Comput., 1986, 7, (3), pp. 856869.
    17. 17)
      • 18. Chen, X., Gu, C., Ding, J., et al: ‘Multilevel fast adaptive cross-approximation with characteristic basis functions’, IEEE Trans. Antennas Propag., 2015, 63, (9), pp. 39944002.
    18. 18)
      • 5. Burnside, W.D., Yu, C.L., Marhefka, R.J.: ‘A technique to combine the geometrical theory of diffraction and the moment method’, IEEE Trans. Antennas Propag., 1975, AP-23, pp. 551558.
    19. 19)
      • 21. Chen, X., Gu, C., Li, Z., et al: ‘Accelerated direct solution of electromagnetic scattering via characteristic basis function method with Sherman-Morrison-Woodbury formula-based algorithm’, IEEE Trans. Antennas Propag., 2016, 64, (10), pp. 44824486.
    20. 20)
      • 10. Matekovits, L., Laza, V.A., Vecchi, G.: ‘Analysis of large Complex structures with the synthetic-functions approach’, IEEE Trans. Antennas Propag., 2007, 55, (9), pp. 25092521.
    21. 21)
      • 8. Engheta, N., Murphy, W.D., Rokhlin, V., et al: ‘The fast multipole method (FMM) for electromagnetic scattering problems’, IEEE Trans. Antennas Propag., 1992, 40, (6), pp. 634641.
    22. 22)
      • 19. Konno, K., Qiang, C., Sawaya, K., et al: ‘Optimization of block size for CBFM in MoM’, IEEE Trans. Antennas Propag., 2012, 60, (10), pp. 47194724.
    23. 23)
      • 11. Suter, E., Mosig, J.R.: ‘A subdomain multilevel approach for the efficient MoM analysis of large planar antennas’, Microw. Opt. Technol. Lett., 2000, 26, (4), pp. 270277.
    24. 24)
      • 2. Ruck, G.T., Barrick, D.E., Stuart, W.D., et al: ‘Radar cross section handbook’, vol. 1, (Plenum Press, USA, 1970).
    25. 25)
      • 22. García, E., Delgado, C., González, I., et al: ‘An iterative solution for electrically large problems combining the characteristic basis function method and the multilevel fast multipole algorithm’, IEEE Trans. Antennas Propag., 2008, 56, (8), pp. 23632371.
    26. 26)
      • 17. García, E., Moreno, J., Catedra, M.F.: ‘Speeding-up the CBFM-MLFMA approach for scattering analysis of very large electromagnetic problems’, Comput. Phys. Commun., 2018, 232, pp. 177189.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0814
Loading

Related content

content/journals/10.1049/iet-map.2019.0814
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading