Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Three-dimensional profiling of collimated radio-frequency orbital angular momentum beams

The use of orbital angular momentum (OAM) modes in radio communication is thought to enhance capacity. This work focuses on using the l = +1 mode transmitted from a 180 mm diameter, 8-element circular antenna array. The transmitted OAM beam was collimated by using a spherical mirror and the intensity and phase were investigated. A xyz scanning stage was used to profile the propagating OAM beam in three dimensions, resulting in a detailed investigation into the effects of collimation on the OAM beam. The proposed system was shown to reduce the beam divergence from 36.6° to 1.2°, without affecting the OAM mode purity of the beam for a frequency range of 4–6 GHz. This investigation showed a step towards realising practical control over the divergence of OAM-carrying beams.

References

    1. 1)
      • 22. Berry, S.J.: ‘Microwave surface waves on metasurfaces with planar discontinuities’. PhD thesis, University of Exeter, 2014.
    2. 2)
      • 17. Tamburini, F., Thidé, B., Mari, E., et al: ‘Encoding many channels on the same frequency through radio vorticity: first experimental test’, New J. Phys., 2012, 14, pp. 117.
    3. 3)
      • 13. Mohammadi, S.M., Daldorff, L.K.S., Bergman, J.E.S., et al: ‘Orbital angular momentum in radio – a system study’, IEEE Trans. Antennas Propag., 2010, 58, (2), pp. 565572.
    4. 4)
      • 14. Edfors, O., Johansson, A.J.: ‘Is orbital angular momentum (OAM) based radio communication an unexploited area?’, IEEE Trans. Antennas Propag., 2012, 60, (2), pp. 11261131.
    5. 5)
      • 7. Genevet, P., Lin, J., Kats, M.A., et al: ‘Holographic detection of the orbital angular momentum of light with plasmonic photodiodes’, Nat. Commun., 2012, 3, pp. 12751278.
    6. 6)
      • 8. Mahmouli, F.E., Walker, S.D.: ‘4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel’, IEEE Wirel. Commun. Lett., 2013, 2, (2), pp. 223226.
    7. 7)
      • 1. Poynting, J.H.: ‘The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light’, Proc. R. Soc. Lond. A, 1909, 82, (2), pp. 560567.
    8. 8)
      • 10. Yan, Y., Xie, G., Lavery, M.P.J., et al: ‘High-capacity millimetre-wave communications with orbital angular momentum multiplexing’, Nat. Commun., 2014, 5, pp. 19.
    9. 9)
      • 4. Simpson, N.B., Dholakia, K., Allen, L., et al: ‘Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner’, Opt. Lett., 1997, 22, (1), pp. 5254.
    10. 10)
      • 24. Chen, J., Liang, X., He, C., et al: ‘High-sensitivity OAM phase gradient detection based on time-modulated harmonic characteristic analysis’, Electron. Lett., 2017, 53, (12), pp. 812814.
    11. 11)
      • 21. Stutzman, W.L., Thiele, G.A.: ‘Antenna theory and design’ (John Wiley & Sons, Hoboken, NJ, USA2012).
    12. 12)
      • 5. Molina-Terriza, G., Torres, J.P., Torner, L.: ‘Twisted photons’, Nat. Phys., 2007, 3, pp. 305310.
    13. 13)
      • 3. Beijersbergen, M.W., Coerwinkel, R.P.C., Kristensen, M., et al: ‘Helical-wavefront laser beams produced with a spiral phaseplate’, Opt. Commun., 1994, 112, (5–6), pp. 321327.
    14. 14)
      • 11. Vourch, C.J., Allen, B., Drysdale, T.D.: ‘Planar millimetre-wave antenna simultaneously producing four orbital angular momentum modes and associated multi-element receiver array’, IET Microw. Antennas Propag., 2016, 10, (14), pp. 14921499.
    15. 15)
      • 23. Mohammadi, S.M., Daldorff, L.K.S., Forozesh, K., et al: ‘Orbital angular momentum in radio: measurement methods’, Radio Sci., 2010, 45, (4), pp. 114.
    16. 16)
      • 9. Thidé, B., Tamburini, F., Mari, E., et al: ‘Radio beam vorticity and orbital angular momentum’, arXiv Preprints, arXiv:1101.6015 [astro-ph.IM], 2011, pp. 46.
    17. 17)
      • 18. Allen, B., Drysdale, T.D., Zhang, S., et al: ‘Reduction of orbital angular momentum radio beam divergence using a 3D printed planar graded index lenses’. 12th European Conf. on Antennas and Propagation, London, UK, April 2018, pp. 8386.
    18. 18)
      • 20. Maity, S., Singha, K., Debnath, P., et al: ‘Textiles in electromagnetic radiation protection’, J. Saf. Eng., 2013, 2, (2), pp. 1119.
    19. 19)
      • 2. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., et al: ‘Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes’, Phys. Rev. A, 1992, 45, (11), pp. 81858189.
    20. 20)
      • 19. Allen, B., Simmons, D., Drysdale, T.D., et al: ‘Performance analysis of an orbital angular momentum multiplexed amplify-and-forward radio relay chain with inter-modal crosstalk’, R. Soc. Open Sci., 2019, 6, (1), pp. 19.
    21. 21)
      • 6. Thidé, B., Then, H., Sjöholm, J., et al: ‘Utilization of photon orbital angular momentum in the low-frequency radio domain’, Phys. Rev. Lett., 2007, 99, (8), pp. 14.
    22. 22)
      • 16. Padgett, M.J., Miatto, F.M., Lavery, M.P.J., et al: ‘Divergence of an orbital-angular-momentum-carrying beam upon propagation’, New J. Phys., 2015, 17, pp. 15.
    23. 23)
      • 25. Berkhout, G.C.G., Beijersbergen, M.W.: ‘Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects’, Phys. Rev. Lett., 2008, 101, (10), pp. 14.
    24. 24)
      • 15. Drysdale, T.D., Allen, B., Stevens, C., et al: ‘How orbital angular momentum modes are boosting the performance of radio links’, IET Microw. Antennas Propag., 2018, 12, (10), pp. 16251632.
    25. 25)
      • 12. Maccalli, S., Pisano, G., Colafrancesco, S., et al: ‘Q-plate for millimeter-wave orbital angular momentum manipulation’, Appl. Opt., 2013, 52, (4), pp. 635639.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0808
Loading

Related content

content/journals/10.1049/iet-map.2019.0808
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address