access icon free Improvement of dual-glucose sensor specificity for prosthetic vascular grafts based on a calibration scheme

Glucose monitoring is an important clinical procedure, especially for dialysis patients who need consistent monitoring of their glucose levels. Currently, the most extensively used method for glucose monitoring involves pricking the finger and sampling a small amount of blood. Given that this procedure is inconvenient and can cause pain and potential infection, there is demand for the development of alternative glucose sensing methods. This study introduces a methodology for improved glucose sensor specificity based on a calibration scheme. One microwave and one capacitive glucose sensor were designed and placed on a prosthetic vascular graft. Each sensor yielded a finite variation in the measured glucose concentrations based on its capacity to sense permittivity changes in aqueous D-glucose solutions. However, as blood components other than glucose—such as proteins, erythrocytes and haemoglobin—may affect the measurements, the authors also introduced a calibration scheme to adjust and calibrate each measurement to ensure accuracy. The measurement data yielded a maximum error of <7.33%. Based on these outcomes, the specificity of glucose monitoring in prosthetic vascular grafts is validated.

Inspec keywords: prosthetics; chemical sensors; proteins; patient monitoring; biochemistry; blood; permittivity; biomedical measurement; sugar; cellular biophysics; calibration; molecular biophysics

Other keywords: dialysis patients; clinical procedure; blood components; dual-glucose sensor specificity; permittivity changes; erythrocytes; aqueous D-glucose solutions; capacitive glucose sensor; calibration scheme; proteins; glucose levels; alternative glucose sensing methods; haemoglobin; microwave glucose sensor; measured glucose concentrations; prosthetic vascular graft; glucose monitoring

Subjects: Prosthetics and orthotics; Patient diagnostic methods and instrumentation; Chemical variables measurement; Prosthetics and other practical applications; Chemical sensors; Physical chemistry of biomolecular solutions and condensed states; Measurement standards and calibration; Biomedical measurement and imaging; Chemical sensors; Measurement standards and calibration; Cellular biophysics

References

    1. 1)
      • 28. Song, K., Ha, U., Park, S., et al: ‘An impedance and multi-wavelength near-infrared spectroscopy IC for non-invasive blood glucose estimation’, IEEE J. Solid-State Circuits, 2015, 50, (4), pp. 10251037.
    2. 2)
      • 21. Libert, N., Morales, R.E.M., Jose da Silva, M.: ‘Capacitive measuring system for two-phase flow monitoring. Part 2 - simulation-based calibration’, Flow Meas. Instrum., 2016, 50, pp. 102111.
    3. 3)
      • 23. Keysight.: ‘Impedance measurement handbook, A guide to measurement technology and techniques’, 6th edition.
    4. 4)
      • 26. Patel, R., Bien, F., Han, K.J., et al: ‘A modified square koch curve fractal stent antenna design for medical implants’. 2016 URSI Asia-Pacific Radio Science Conf. (URSI AP-RASC), Seoul, South Korea, 21–25 August 2016.
    5. 5)
      • 22. Stott, A.L., Green, R.G., Seraji, K.: ‘Comparison of the use of internal and external electrodes for the measurement of the capacitance and conductance of fluids in pipes’, J. Phys. E Sci. Instrum., 2000, 18, (7), pp. 587592.
    6. 6)
      • 27. Hofmann, M., Fischer, G., Weigel, R., et al: ‘Microwave-based noninvasive concentration measurements for biomedical applications’, IEEE Trans. Microw. Theory Tech., 2013, 61, (5), pp. 21952204.
    7. 7)
      • 14. Chen, S., Guo, M., Xu, K., et al: ‘A frequency synthesiser based microwave permittivity sensor using CMRC structure’, IEEE Access, 2018, 6, pp. 85568563.
    8. 8)
      • 4. American Diabetes Association.: ‘6. Glycemic targets: standards of medical care in diabetes-2018’, Diabetes Care, 2018, 41, pp. S55S54.
    9. 9)
      • 2. Dhruva, S.S., Redberg, R.F.: ‘FDA regulation of cardiovascular devices and opportunities for improvement’, J. Interv. Cardiac Electrophysiol., 2013, 36, pp. 99105.
    10. 10)
      • 24. Evaluation board for 24-bit capacitance-to-digital converter EVAL-AD7747’, Available at: https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-ad7747.html.
    11. 11)
      • 3. Kiourti, A., Psathas, K.A., Nikita, K.S.: ‘Implantable and ingestible medical devices with wireless telemetry functionalities: a review of current status and challenges’, Bioelectromagnetics, 2014, 35, pp. 115.
    12. 12)
      • 11. Huber, D., Talary, M., Dewarrat, F, et al: ‘The compensation of perturbing temperature fluctuation in glucose monitoring technologies based on impedance spectroscopy’, Med. Biol. Eng. Comput., 2007, 45, (9), pp. 863876.
    13. 13)
      • 19. Kim, N.Y., Adhikari, K.K., Dhakal, R., et al: ‘Rapid sensitive, and reusable detection of glucose by a robust radiofrequency integrated passive device biosensor chip’, Sci. Rep., 2015, 5, pp. 7807.
    14. 14)
      • 18. Deepak, K., Varadan, V.V., Varadan, V.K., et al: ‘A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies’, IEEE Trans. Instrum. Meas., 1989, 37, (3), pp. 789793.
    15. 15)
      • 5. The International Organization for Standardisation.: ‘In vitro diagnostic test systems – requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus. ISO/TC212/ICS:11.100.10’, International Standard ISO 15197, 2013.
    16. 16)
      • 17. Keysight Technologies.: ‘Basics of measuring the dielectric properties of materials’, (March 2017, 5989-2589EN).
    17. 17)
      • 20. Aslam, M.Z., Tang, T.B.: ‘A high resolution capacitive sensing system for the measurement of water content in crude oil’, MDPI Sensors, 2014, 14, (7), pp. 1135111361.
    18. 18)
      • 10. Xiao, X., Li, Q.: ‘A noninvasive measurement of blood glucose concentration by UWB microwave Spectrum’, IEEE Antennas Wirel. Propag. Lett., 2017, 16 pp. 10401043doi:.
    19. 19)
      • 8. Marie, D.G-H., Gornik, H.L., Coletta, B, et al: ‘2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary’, J. Am. Coll. Cardiol., 2017, 69, (11), pp. 14651508.
    20. 20)
      • 1. Joung, Y.H.: ‘Development of implantable medical devices: from an engineering perspective’, Int. Neurourol. J., 2013, 17, pp. 98106.
    21. 21)
      • 25. Ghodgaonkar, D.K., Varadan, V.V., Varadan, V.K., et al: ‘Free-space measurement of Complex permittivity and Complex permeability of magnetic materials at microwave frequencies’, IEEE Trans. Instrum. Meas., 1990, 39, (2), pp. 387394.
    22. 22)
      • 6. Kesavadev, J., Ramachandran, L., Krishnan, G.: ‘Glucose monitoring technologies – complementary or competitive? Role of continuous glucose monitoring versus flash glucose monitoring versus self-monitoring of blood glucose’, J. Diabetology, 2017, 8, (3), pp. 6167.
    23. 23)
      • 16. Arsen, B., Harutyun, M., Kim, S.W., et al: ‘Real-time noninvasive measurement of glucose concentration using a microwave biosensor’, J. Sens., 2010, 2010, pp. 17, Article ID 452163.
    24. 24)
      • 9. Topsakal, E., Karacolak, T., Moreland, E.C.: ‘Glucose-dependent dielectric properties of blood plasma’. IEEE General Assembly and Scientific Symp., Istanbul, Turkey, 2011, vol. 1, pp. 1320.
    25. 25)
      • 7. Cobelli, C., Eric, R., Boris, K.: ‘Artificial pancreas: past, present, future’, Diabetes, 2011, 60, (11), pp. 26722682.
    26. 26)
      • 12. Jan, W., Schmalz, K., Meliani, C., et al: ‘A 7 GHz biosensor for permittivity change with enhanced sensitivity through phase compensation’. Proc. 44th European Microwave Conf., Rome, Italy, October 2014.
    27. 27)
      • 15. Kim, S.W., Melikyan, H., Kim, J., et al: ‘Noninvasive in vitro measurement of pic-blood D-glucose by using a microwave cavity sensor’, Sci. Direct, 2012, 96, (3), pp. 379384.
    28. 28)
      • 13. Shimul, S., Cano-Garcia, H., Sotiriou, I., et al: ‘A glucose sensing system based on transmission measurements at millimetre waves using micro strip patch antennas’, Sci. Rep., 2017, 7, (1), pp. 111.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0617
Loading

Related content

content/journals/10.1049/iet-map.2019.0617
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading