Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Time-domain signal and noise analysis of millimetre-wave/THz diodes by numerical solution of stochastic telegrapher's equations

Time-domain signal and noise analysis of millimetre-wave/THz diodes by numerical solution of stochastic telegrapher's equations

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The time-domain simultaneous signal and noise analysis of mm-wave/THz devices (diode) modelled as a transmission line is considered. For such devices, stochastic telegrapher's equations of a transmission line are extracted assuming a quasi-transverse electromagnetic mode. Since the analytical solution for these equations does not exist, numerical analysis of such equations is presented here in millimetre-wave and terahertz frequencies. These equations are analysed with two different numerical methods in the time domain, namely the finite-integration technique and the Method of Moments. A semi-distributed model in the ADS commercial software is used to validate the numerical results. Non-linear effects in the model are introduced to simulate a Schottky diode. Using this non-linear model signal and noise behaviour in a Schottky diode is analysed, resulting in the simulation of the noise figure of the device.

References

    1. 1)
      • 2. Yuce, M., Keong, H., Chae, M.: ‘Non-destructive terahertz imaging of illicit drugs using spectral fingerprints’, Opt. Express, 2003, 11, (20), pp. 25492554.
    2. 2)
      • 12. Brancik, L., Kolarova, E.: ‘Application of stochastic differential-algebraic equations in hybrid MTL systems analysis’, Elektron. Elektrotech., 2014, 20, (5), pp. 4145.
    3. 3)
      • 31. Roden, J., Smith, W., Gedney, S.: ‘Finite-difference, time-domain analysis of lossy transmission lines’, IEEE Trans. Electromagn. Compat., 1996, 38, (1), pp. 1524.
    4. 4)
      • 36. Ongareau, E., Bosisio, R.G., Aubourg, M., et al: ‘A nonlinear and distributed modeling procedure of FET's’, Int. J. Numer. Modeling, 1993, 6, pp. 237251.
    5. 5)
      • 30. Tang, A.Y., Drakinskiy, V., Yhland, K., et al: ‘Analytical extraction of a Schottky diode model from broadband –parameters’, IEEE Trans. Microw. Theory Tech., 2013, 61, (5), pp. 18701878.
    6. 6)
      • 32. Taflove, A.: ‘Advances in computational electrodynamics: the finite-difference time-domain method (Artech house antenna library)’ (Artech House, London, UK, 1998).
    7. 7)
      • 20. Afrooz, K., Abdipour, A., Tavakoli, A., et al: ‘Time-domain analysis of lossy active transmission lines using FDTD method’, AEU – Int. J. Electron. Commun., 2009, 63, (3), pp. 168178.
    8. 8)
      • 24. Seifi, Z., Abdipour, A., Mirzavand, R.: ‘Distributed signal and noise modeling of millimeter wave transistor based on CMOS technology’, Appl. Comput. Electromagn. Soc. J., 2015, 30, (8), pp. 915921.
    9. 9)
      • 29. Papoulis, A.: ‘Probability, random variables, and stochastic processes’ (McGraw-Hill Higher Education, New York, USA, 2002, Fifth Edition).
    10. 10)
      • 7. Abdipour, A., Pacaud, A.: ‘Complete sliced model of microwave FET's and comparison with lumped model and experimental results’, IEEE Trans. Microw. Theory Tech., 1996, 44, (1), pp. 49.
    11. 11)
      • 25. Sung, J., Kang, G., Kim, S.: ‘A transient noise model for frequency-dependent noise sources’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2003, 22, (8), pp. 10971104.
    12. 12)
      • 1. Jha, K.R., Singh, G.: ‘Analysis of narrow terahertz microstrip transmission-line on multilayered substrate’, J. Comput. Electron., 2011, 10, pp. 186194.
    13. 13)
      • 23. Khosravi, R., Abdipour, A.: ‘A new wave approach for signal and noise modelling of microwave/mm-wave FET based on green's function concept’, Int. J. Electron., 2003, 90, (5), pp. 303312.
    14. 14)
      • 22. Afrooz, A., Abdipour, A., Martin, F.: ‘Time domain analysis of one-dimensional linear and non-linear composite right/left-handed transmission lines using finite-difference time-domain method’, IET Microw. Antennas Propag., 2012, 6, (3), pp. 312325.
    15. 15)
      • 9. Simic, N., Ingvarson, F., Kristiansson, S.: ‘A high-frequency extension of a surface-potential based substrate model for noise coupling analysis’. 2006 25th Int. Conf. on Microelectronics, Belgrade, Serbia, May 2006, pp. 25492554.
    16. 16)
      • 15. Daneshmandian, F., Abdipour, A., Askarpour, A.N.: ‘Full wave analysis of terahertz dispersive and lossy plasmonic HEMT using hydrodynamic model’, J. Opt. Soc. Am. B, 2019, 36, (4), p. 11381143.
    17. 17)
      • 3. Siegel, P.: ‘Terahertz technology in biology and medicine’, IEEE Trans. Microw. Theory Tech., 2004, 52, (10), pp. 24382447.
    18. 18)
      • 19. Rozzi, T., Farina, M.: ‘Advanced electromagnetic analysis of passive and active planar structures’ (The Institution of Electrical Engineering, London, 1999).
    19. 19)
      • 10. Kristiansson, S., Ingvarson, F., Kagganti, S.: ‘A surface potential model for predicting substrate noise coupling in integrated circuits’, IEEE J. Solid-State Circuits, 2005, 40, (9), pp. 17971803.
    20. 20)
      • 18. Escotte, L., Mollier, J.: ‘Semidistributed model of millimeter-wave FET for parameter and noise figure predictions’, EEE Trans. Microw. Theory Tech., 1990, 38, (6), pp. 748753.
    21. 21)
      • 14. Brancik, L., Kolarova, E.: ‘Simulation of random effects in transmission line models via stochastic differential equations’. 2012 2nd Int. Conf. on Advances in Computational Tools for Engineering Applications, ACTEA 2012, Beirut, 2012.
    22. 22)
      • 8. Chen, Y., Guo, Y., Huang, W.: ‘Accurate distributed and semidistributed models of field effect transistors for millimeter wave applications’, J. RF Microw. Comput.-Aided Eng., 2011, 21, (3), pp. 272278.
    23. 23)
      • 27. Demir, A., Liu, E., Sangiovanni-Vincentelli, A.: ‘Time-domain non-Monte Carlo noise simulation for nonlinear dynamic circuits with arbitrary excitations’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 1996, 15, (5), pp. 493505.
    24. 24)
      • 28. Demir, A., Sangiovanni-Vincentelli, A.: ‘Analysis and simulation of noise in nonlinear electronic circuits and systems’ (Springer Science, New York, USA, 1998).
    25. 25)
      • 21. Afrooz, K., Abdipour, A., Tavakoli, A., et al: ‘Nonlinear and fully distributed field effect transistor modelling procedure using time-domain method’, IET Microw. Antennas Propag., 2008, 2, (8), pp. 886897.
    26. 26)
      • 4. Orlandi, A., Paul, C.: ‘FDTD analysis of lossy, multiconductor transmission line terminated in arbitrary loads’, IEEE Trans. Electromagn. Compat., 1996, 3, (38), pp. 388399.
    27. 27)
      • 16. Goasguen, S., Tomeh, M., El-Ghazaly, S.: ‘Electromagnetic and semiconductor device simulation using interpolating wavelets’, IEEE Trans. Microw. Theory Tech., 2001, 49, (12), pp. 22582265.
    28. 28)
      • 5. Yuce, M., Keong, H., Chae, M.: ‘Wideband communication for implantable and wearable systems’, IEEE Trans. Microw. Theory Tech., 2009, 57, (10), pp. 25972604.
    29. 29)
      • 26. Bolcato, P., Poujois, R.: ‘A new approach for noise simulation in transient analysis’. Proc., 1992 IEEE Int. Symp. on Circuits and Systems, 1992. ISCAS ‘92, San Diego, CA, USA, 06 August 2002, pp. 887890.
    30. 30)
      • 17. Hussein, Y.A., El-Ghazaly, S.M.: ‘Modeling and optimization of microwave devices and circuits using genetic algorithms’, IEEE Trans. Microw. Theory Tech., 2004, 52, (1), pp. 329336.
    31. 31)
      • 6. Imtiaz, S., El-Ghazaly, M.: ‘Global modeling of millimeter-wave circuits: electromagnetic simulation of amplifiers’, IEEE Trans. Microw. Theory Tech., 1997, 45, (12), pp. 22082216.
    32. 32)
      • 33. Zhang, Y., Spielman, B.: ‘A stability analysis for time-domain method-of-moments analysis of 1-D double-negative transmission lines’, IEEE Trans. Microw. Theory Tech., 2007, 55, (9), pp. 18871898.
    33. 33)
      • 11. Rizzoli, V., Mastri, F., Cecchetti, C.: ‘Computer-aided noise analysis of MESFET and HEMT mixers’, IEEE Trans. Microw. Theory Tech., 1989, 37, (9), pp. 14011410.
    34. 34)
      • 35. Lampin, J.-F., Crepin, T., Perrin, M., et al: ‘Analysis of right- and left-handed dispersive transmission lines at terahertz frequencies’. Infrared and Millimeter Waves, 2004 and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 16 May 2005.
    35. 35)
      • 34. Harrington, R.F.: ‘Time–harmonic electromagnetic fields’ (McGraw-Hill, York, PA, 1961), p. 170, 386.
    36. 36)
      • 13. Brancik, L., Kolarova, E.: ‘Multiconductor transmission line models excited from multiple stochastic sources’. 2015 38th Int. Conf. on Telecommunications and Signal Processing, TSP 2015, Prague, Czech Republic, 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0564
Loading

Related content

content/journals/10.1049/iet-map.2019.0564
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address