access icon free Symplectic MRTD for solving three-dimensional Maxwell equations based on optimised operators

A new set of symplectic operators for the symplectic multi-resolution time-domain (S-MRTD) method is obtained by using the time reversible constraint and the growth factor. Then, the perfectly matched layer absorbing boundary condition based on splitting field technique is introduced into the S-MRTD method and its iterative formula is derived. The stability and numerical dispersion of S-MRTD method with optimised symplectic operators are discussed in detail. Finally, the optimal S-MRTD method is applied to the calculation of electromagnetic radiation and scattering. Numerical calculation and simulation results show that the S-MRTD is more accurate and efficient than the traditional FDTD method.

Inspec keywords: electromagnetic wave scattering; Maxwell equations; time-domain analysis; iterative methods; computational electromagnetics

Other keywords: splitting field technique; numerical simulation; iterative formula; optimised symplectic operators; growth factor; numerical calculation; electromagnetic scattering; optimal S-MRTD method; stability; three-dimensional Maxwell equations; S-MRTD method; time reversible constraint; electromagnetic radiation; traditional FDTD method; optimised operators; symplectic MRTD; numerical dispersion; perfectly matched layer absorbing boundary condition; symplectic multiresolution time-domain method; boundary condition

Subjects: Electromagnetic wave propagation; Electromagnetic waves: theory; Numerical approximation and analysis; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 10. Hirono, T., Lui, W., Seki, S., et al: ‘A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator’, IEEE Trans. Microw. Theory Tech., 2001, 49, (9), pp. 16401648.
    2. 2)
      • 15. Sun, Z., Shi, L.H., Zhang, X., et al: ‘Multiresolution time domain scheme using symplectic integrators’, Prog. Electromagn. Res. M, 2013, 32, pp. 111.
    3. 3)
      • 12. Sha, W., Huang, Z., Chen, M., et al: ‘Survey on symplectic finite-difference time-domain schemes for Maxwell's equations’, IEEE Trans. Antennas & Propag., 2008, 56, (2), pp. 493500.
    4. 4)
      • 8. Represa, C., Pereira, C., Cabeceira, A.C.L., et al: ‘PML absorbing boundary conditions for the multiresolution time-domain techniques based on the discrete wavelet transform’, Appl. Comp. Electro. Soc. (ACES) J., 2005, 20, (3), pp. 207212.
    5. 5)
      • 11. Kusaf, M., Oztoprak, A.Y., Daoud, D.S., et al: ‘Optimized exponential operator coefficients for symplectic FDTD method’, IEEE Microw. Wirel. Compon. Lett., 2005, 15, (2), pp. 8688.
    6. 6)
      • 4. Li-Hua, W., Xian-Liang, W.U., Kai-Hong, S., et al: ‘Stability and numerical dispersion of RK-MRTD schemes’, J. Anhui Univ.(Nat. Sci. Ed.), 2011, 35, (5), pp. 6872.
    7. 7)
      • 2. Zhang, J., Chen, Z.: ‘An unconditionally stable 3-D ADI-MRTD method free of the CFL stability condition’, IEEE Microw. Wirel. Compon. Lett., 2001, 11, (8), pp. 349351.
    8. 8)
      • 13. Guo, Z., Lin, D.: ‘Application of the PML absorbing boundary condition to FD-TD simulation’, J. Electron. (China), 1998, 15, (2), pp. 168173.
    9. 9)
      • 6. Wei, M., Huang, Z., Wu, B., et al: ‘A novel symplectic multi-resolution time-domain scheme for electromagnetic simulations’, IEEE Microw. Wirel. Compon. Lett., 2013, 23, (4), pp. 175177.
    10. 10)
      • 1. Krumpholz, M., Katehi, L.P.B.: ‘New time-domain schemes based on multiresolution analysis’, IEEE Trans. Microw. Theory Tech., 1996, 44, (4), pp. 555571.
    11. 11)
      • 9. Zhixiang, H., Wei, S., Xianliang, W.U.: ‘Scheme of symplectic FDTD’, Syst. Eng. Electron., 2009, 31, (2), pp. 456458.
    12. 12)
      • 3. Cao, Q., Kanapady, R., Reitich, F., et al: ‘High-order Runge-Kutta multiresolution time-domain methods for computational electromagnetics’, IEEE Trans. Microw. Theory Tech., 2006, 54, (8), pp. 33163326.
    13. 13)
      • 14. Song, H., Yang, H.W.: ‘Analysis of numerical dispersion properties of SFDTD and MRTD schemes’, Optik – Int. J. Light and Electron Opt., 2012, 123, (3), pp. 272275.
    14. 14)
      • 7. Berenger, J.P.: ‘Three-dimensional perfectly matched layer for the absorption of electromagnetic waves’, J. Comput. Phys., 1996, 127, (2), pp. 363379.
    15. 15)
      • 5. Min, W., Xian-Liang, W.U., Zhi-Xiang, H., et al: ‘The scheme of symplectic MRTD using propagation technique’, Acta Electron. Sin., 2012, 40, (5), pp. 10341038.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0460
Loading

Related content

content/journals/10.1049/iet-map.2019.0460
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading