access icon free Flexibility in over-the-air testing of receiver sensitivity with reverberation chambers

The next generation of wireless device utilises higher frequencies and a large array of form factors. With miniaturisation of devices and the growth of internet-of-things applications having no connectors for testing, the use of conducted tests is no longer an option and verification of this equipment requires over-the-air measurements. Additionally, some important metrics such as receiver sensitivity requires an actual communication link. Reverberation chambers loaded with lossy absorbers provide an efficient environment to measure such averaged quantities with flexibility in a test volume as well as device size, shape, and placement. Here, the authors present an overview of OTA measurements in reverberation chambers compared to anechoic measurements. The authors show the consistency and flexibility of reverberation chambers through measurements of a wireless device in three different reverberation chamber setups and compare to an anechoic chamber measurement. By using a proper chamber setup, and by showing a coherence bandwidth (CBW) as a universal metric for comparing chamber loading between setups, excellent chamber-to-chamber consistency is shown, without precise placement of the device in each chamber. The authors show empirical evidence for the choice of threshold in determining the CBW.

Inspec keywords: antenna testing; radio receivers; anechoic chambers (electromagnetic); reverberation chambers

Other keywords: wireless device; receiver sensitivity; Internet-of-Things; chamber loading; coherence bandwidth; anechoic measurements; reverberation chamber; anechoic chamber measurement; over-the-air testing; chamber-to-chamber consistency; communication link; over-the-air measurements; OTA measurements

Subjects: Electromagnetic compatibility and interference; Single antennas; Radio links and equipment

References

    1. 1)
      • 10. CTIA Certification: ‘Test plan for wireless device over-the-air performance’, Version Number: 3.7.1, 2018.
    2. 2)
      • 22. Remley, K.A., Wang, C.-M.J., Williams, D.F., et al: ‘A significance test for reverberation-chamber measurement uncertainty in total radiated power of wireless devices’, IEEE Trans. Electromagn. Compat., 2015, 58, (1), pp. 207219.
    3. 3)
      • 16. Toorn, J.A.D., Remley, K.A., Holloway, C.L., et al: ‘Proximity-effect test for lossy wireless-device measurements in reverberation chambers’, IET Sci. Meas. Technol., 2015, 9, (5), pp. 540546.
    4. 4)
      • 27. Senic, D., Remley, K.A., Becker, M.G., et al: ‘Spatial uniformity study in a loaded reverberation chamber at millimeter-wave frequencies’. Proc. IEEE Symp. EMCSI, Long Beach, CA, USA, July 2018, pp. 467472.
    5. 5)
      • 9. Jing, Y., Rumney, M., Kong, H., et al: ‘Overview of 5G UE OTA performance test challenges and methods’. IEEE MTT-S Int. Wireless Symp., Chengdu, China, May 2018.
    6. 6)
      • 14. Becker, M.G., Frey, M., Streett, S., et al: ‘Correlation-base uncertainty in loaded reverberation chambers’, IEEE Trans. Antennas Propag., 2018, 66, (10), pp. 54535462.
    7. 7)
      • 7. Chen, X., Tang, J., Li, T., et al: ‘Reverberation chambers for over-the-air test: an overview of two decades of research’, IEEE. Access., 2018, 6, pp. 4912949143.
    8. 8)
      • 26. Morrison, D.F: ‘Multivariate statistical methods’ (McGraw-Hill, New York, NY, USA, 1967).
    9. 9)
      • 11. CTIA Certification: ‘Test plan for wireless large-form_factor device over-the-air performance’, Version Number: 1.2, 2017.
    10. 10)
      • 20. Burger, W.T.C., Remley, K.A., Holloway, C.L., et al: ‘Proximity and antenna orientation effects for large-form-factor devices in a reverberation chamber’. Proc. IEEE Int. Electromagn. Compat. Symp. Dig., Denver, CO, USA, August 2013, pp. 671676.
    11. 11)
      • 25. Holloway, C.L., Shah, H.A., Pirkl, R.J., et al: ‘Reverberation chamber techniques for determining the radiation and total efficiency of antennas’, IEEE Trans. Antennas Propag., 2012, 60, (4), pp. 17581770.
    12. 12)
      • 8. Qi, Y., Yang, G., Liu, L., et al: ‘5G over-the-air measurement challenges: overview’, IEEE Trans. Electromagn. Compat., 2017, 59, (6), pp. 16611670.
    13. 13)
      • 2. Orlenius, C., Kildal, P.S., Poilasne, G.: ‘Measurements of total isotropic sensitivity and average fading sensitivity of CDMA phones in reverberation chamber’. IEEE Antennas and Propagation Society Int. Symp., Washington, DC, USA, July 2005, pp. 409412.
    14. 14)
      • 28. Dortsmans, J.N.H., Remley, K.A., Senic, D., et al: ‘Use of absorption cross section to predict coherence bandwidth and other characteristics of a reverberation chamber setup for wireless-system tests’, IEEE Trans. Electromagn. Compat., 2016, 58, (5), pp. 16531661.
    15. 15)
      • 17. Jakes, W.C.: ‘Multipath interference’, in Jakes, W.C. (Ed.): ‘Microwave mobile communications’ (Wiley-IEEE Press, New York, NY, USA, 1974), pp. 1178.
    16. 16)
      • 3. Delangre, O., De Doncker, P., Horlin, F., et al: ‘Reverberation chamber environment for testing communication systems: applications to OFDM and SC-FDE’. Proc. 68th IEEE Veh. Technol. Conf., Calgary, Canada, September 2008, pp. 15.
    17. 17)
      • 12. Hill, D.A.: ‘Boundary fields in reverberation chambers’, IEEE Trans. Electromagn. Compat., 2005, 47, (2), pp. 281290.
    18. 18)
      • 18. Durgin, G.D.: ‘Space-time wireless channels’ (Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003).
    19. 19)
      • 24. Coder, J.B., Ladbury, J.M., Holloway, C.L., et al: ‘Examining the true effectiveness of loading a reverberation chamber’. Proc. IEEE. Int. Electromagn. Compat. Symp., Ft. Lauderdale, FL, USA, July 2010, pp. 530535.
    20. 20)
      • 15. Horansky, R.D., Meurs, T.B., North, M.V., et al: ‘Statistical considerations for total isotropic sensitivity of wireless devices measured in reverberation chambers’. Proc. Of the 2018 Int. Symp. on Electromagnetic Compatibility, Amsterdam, The Netherlands, August 2018, pp. 398403.
    21. 21)
      • 6. Remley, K.A., Dortmans, J., Weldon, C., et al: ‘Configuring and verifying reverberation chambers for testing cellular wireless devices’, IEEE Trans. Electromagn. Compat., 2016, 58, (3), pp. 671672.
    22. 22)
      • 13. Chen, X., Kildal, P.-S., Carlsson, J.: ‘Investigation of the distribution of the random LOS component in a reverberation chamber’. 7th European Conf. on Antennas and Propagation (EuCAP), Gothenburg, Sweden, April 2013, pp. 25512554.
    23. 23)
      • 23. Pirkl, R.J., Remley, K.A., Lötbäck Patane, C.S., et al: ‘Reverberation chamber measurement correlation’, IEEE Trans. Electromagn. Compat., 2012, 54, (3), pp. 533545.
    24. 24)
      • 1. Cisco: ‘Cisco visual networking index: global mobile data traffic forecast update, 2017–2022’, Cisco, 2019. Available at https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.pdf.
    25. 25)
      • 4. Kildal, P.-S., Orlenius, C., Carlsson, J.: ‘OTA testing in multipath of antennas and wireless devices with MIMO and OFDM’, Proc. IEEE, 2012, 100, (7), pp. 21452215.
    26. 26)
      • 21. Holloway, C.L., Hill, D.A., Ladbury, J.M., et al: ‘On the use of reverberation chambers to simulate a rician radio environment for the testing of wireless devices’, IEE Trans. Antennas Propag., 2006, 54, (11), pp. 31673177.
    27. 27)
      • 5. Lötbäck Patané, C., Skårbratt, A., Rehammar, R., et al: ‘On the use of reverberation chambers for assessment of MIMO OTA performance of wireless devices’. Proc. 7th Eur. Conf. Antennas Propag., Gothenburg, Sweden, April 2013, pp. 101105.
    28. 28)
      • 19. Chen, X., Kildal, P.-S., Orlenius, C., et al: ‘Channel sounding of loaded reverberation chamber for over-the-air testing of wireless devices-coherence bandwidth versus average mode bandwidth and delay spread’, IEEE Trans. Antennas Propag., 2009, 8, pp. 678681.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0417
Loading

Related content

content/journals/10.1049/iet-map.2019.0417
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading