access icon free Surface adjustment strategy for a large radio telescope with adjustable dual reflectors

With the development of large-aperture and high-frequency radio telescopes, a surface adjustment procedure for the compensation of surface deformations has become of great importance. In this study, an innovative surface adjustment strategy is proposed to achieve an automated adjustment for the large radio telescope with adjustable dual reflectors. In the proposed strategy, a high-precision and long-distance measurement instrument is adopted and installed on the back of the sub-reflector to measure the distances and elevation angles of the target points on the main reflector. Here, two surface adjustment purposes are discussed. The first purpose is to ensure that the main reflector and sub-reflector are always positioned at their ideal locations during operation. The second purpose is to adjust the main reflector to the location of the best fitting reflector, and the sub-reflector to the focus of the best fitting reflector. Next, the calculation procedures for the adjustments of the main reflector and the sub-reflector are discussed in detail, and corresponding simulations are carried out to verify the proposed method. The results show that the proposed strategy is effective. This study can provide helpful guidance for the design of automated surface adjustments for large telescopes.

Inspec keywords: reflector antennas; deformation; distance measurement; radiotelescopes

Other keywords: high-frequency radio; surface adjustment procedure; long-distance measurement instrument; radio telescope; automated surface adjustments; innovative surface adjustment strategy; automated adjustment; surface deformations; adjustable dual reflectors

Subjects: Radioastronomical techniques and equipment; Spatial variables measurement; Radiotelescopes; Spatial variables measurement

References

    1. 1)
      • 14. Aderman, H., Padula, S.: ‘Integrated thermal-structural-electromagnetic design optimization of large space antenna reflectors’. NASA Technical Memorandum 87713, Langley Research Center, Hampton, Virginia, 1986.
    2. 2)
      • 12. Liu, J., Hollaway, L.: Integrated structure-electromagnetic optimization of large reflector antenna systems’, Struct. Multidisc. Optim., 1998, 16, (1), pp. 2936.
    3. 3)
      • 25. Levy, R.: ‘Structural engineering of microwave antennas: for electrical, mechanical, and civil engineers’ (IEEE Press, Piscataway, NJ, 1996).
    4. 4)
      • 5. Sinton, S., Rahmat-Samii, Y.: ‘Random surface error effects on offset cylindrical reflector antennas’, IEEE Trans. Antennas Propag., 2003, 51, (6), pp. 13311337.
    5. 5)
      • 27. Rahmat-Samii, Y.: ‘An efficient computational method for characterizing the effects of random surface errors on the average power pattern of reflectors’, IEEE Trans. Antennas Propag., 1983, 31, (1), pp. 9298.
    6. 6)
      • 22. Wang, W., Wang, C.S., Duan, B.Y., et al: ‘Compensation for gravity deformation via subreflector motion of 65 m shaped Cassegrain antenna’, IET Microwaves Antennas Propag., 2013, 8, (3), pp. 158164.
    7. 7)
      • 15. Lian, P.Y., Duan, B.Y., Wang, W., et al: ‘A pattern approximation method for distorted reflector antennas using piecewise linear fitting of the exponential error term’, IEEE Trans. Antennas Propag., 2015, 63, (10), pp. 45464551.
    8. 8)
      • 19. Feng, S.F., Wang, C.S., Duan, B.Y., et al: ‘Design of tipping structure for 110 m high-precision radio telescope’, Acta Astronaut., 2017, 141, pp. 5056.
    9. 9)
      • 2. Ukita, N., Ezawa, H., Ikenoue, B., et al: ‘Thermal and wind effects on the azimuth axis tilt of the ASTE 10-m antenna’, Publ. Natl. Astron. Obs. Jpn., 2017, 10, pp. 2533.
    10. 10)
      • 18. Srikanth, S., Norrod, R., King, L., et al: ‘An overview of the green bank telescope’. IEEE Antennas and Propagation Society Int. Symp., Orlando, FL, USA, August 1999, pp. 15481551.
    11. 11)
      • 3. Greve, A., Morris, D.: ‘The beam pattern of reflector antennas with buckled panels’, IEEE Trans. Antennas Propag., 2010, 58, (3), pp. 959962.
    12. 12)
      • 4. Dong, J., Zhong, W.Y., Wang, J.Q.: ‘Correcting gravitational deformation at the Tianma radio telescope’, IEEE Trans. Antennas Propag., 2018, 66, (4), pp. 20442048.
    13. 13)
      • 8. Lian, P.Y., Duan, B.Y., Wang, W., et al: ‘Effects of non-uniform surface errors along the radius on reflector's radiation characteristic and its quality evaluation’, IEEE Trans. Antennas Propag., 2015, 63, (5), pp. 23122316.
    14. 14)
      • 13. Wang, C.S., Duan, B.Y., Qiu, Y.Y.: ‘On distorted surface analysis and multidisciplinary structural optimization of large reflector antennas’, Struct. Multidiscip. Optim., 2007, 33, (6), pp. 519528.
    15. 15)
      • 21. Greve, A., Bremer, M.: ‘Improvement of the IRAM 30-m telescope from temperature measurements and finite-element calculations’, IEEE Trans. Antennas Propag., 2005, 53, (2), pp. 851860.
    16. 16)
      • 10. Von Hoerner, S.: ‘Homologous deformations of tiltable telescopes’, ASCE Int. J. Struct. Div., 1976, 93, (5), pp. 461486.
    17. 17)
      • 1. Rahmat-Samii, Y., Haupt, R.L.: ‘Reflector antenna developments: a perspective on the past, present, and future’, IEEE Antennas Propag. Mag., 2015, 57, (2), pp. 8595.
    18. 18)
      • 28. Ruze, J.: ‘Antenna tolerance theory – a review’, Proc. IEEE, 1966, 54, (4), pp. 633640.
    19. 19)
      • 6. Duan, B.Y., Wang, C.S.: ‘Reflector antenna distortion analysis using MEFCM’, IEEE Trans. Antennas Propag., 2009, 57, (10), pp. 34093413.
    20. 20)
      • 24. Rahmat-Samii, Y.: ‘Surface diagnosis of large reflector antennas using microwave holographic metrology: an iterative approach’, Radio Sci., 1984, 19, pp. 12051217.
    21. 21)
      • 26. Zarghamee, M.: ‘Peak gain of a Cassegrain antenna with secondary position adjustment’, IEEE Trans. Antennas Propag., 1982, 30, (6), pp. 12281233.
    22. 22)
      • 7. Rocca, P., Anselmi, N., Massa, A.: ‘Interval arithmetic for pattern tolerance analysis of parabolic reflectors’, IEEE Trans. Antennas Propag., 2014, 62, (10), pp. 49524960.
    23. 23)
      • 23. Nikolic, B., Hills, R.E., Richer, J.S.: ‘Measurement of antenna surfaces from in- and out-of-focus beam maps using astronomical sources’, Astron. Astrophys., 2007, 465, pp. 679683.
    24. 24)
      • 20. Zhang, J., Huang, J., Zhou, J., et al: ‘A compensator for large antennas based on pointing error estimation under a wind load’, IEEE Trans. Antennas Propag., 2017, 25, (5), pp. 19121920.
    25. 25)
      • 9. Ban, Y., Duan, B.Y., Wang, C.S., et al: ‘Homology parameters for large axisymmetric shaped dual-reflector antennas’, IEEE Trans. Antennas Propag., 2017, 65, (7), pp. 33923398.
    26. 26)
      • 17. Schloerb, F.P., Sanchez, D., Narayanan, G., et al: ‘Calibration and operation of the active surface of the large millimeter telescope’. SPIE Astronomical Telescopes + Instrumentation, Edinburgh, UK, 26 June - 1 July 2016, pp. 17, doi: https://doi.org/10.1117/12.2232821.
    27. 27)
      • 16. Kawabe, R., Kohno, K., Tamura, Y., et al: ‘New 50-m-class single dish telescope: large sub-millimeter telescope (LST)’. SPIE Astronomical Telescopes + Instrumentation, Edinburgh, UK, 26 June - 1 July 2016, pp. 112, doi: https://doi.org/10.1117/12.2232202.
    28. 28)
      • 11. Von Hoemer, S., Wong, W.: ‘Gravitational deformation and astigmatism of tiltable radio telescopes’, IEEE Trans. Antennas Propag., 1975, 23, (5), pp. 689695.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0387
Loading

Related content

content/journals/10.1049/iet-map.2019.0387
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading