access icon free Inhomogeneous electromagnetic metamaterial design method for improving efficiency and range of wireless power transfer

In the past few years, the limitation of homogeneous electromagnetic metamaterial (EMMM) in magnetic field modulation had been proved by many researches. The introduction of inhomogeneous EMMM (IEMMM) provided a significant progress in improving the range and efficiency of the wireless power transfer system (WPTS). An IEMMM with three kinds of effective permeability came up here. By analysing the effective permeability characteristics of the circular, square, and ‘8’-shaped coil unit cell and the modulated regulation of magnetic field by negative permeability medium, a two-dimensional IEMMM with combinations of square and ‘8’-shaped coil unit cell were studied. The finite element simulation results of WPTS with IEMMM proved an improvement in magnetic field modulation and flux leakage control. In the WPTS, the designed IEMMM is able to improve the power transmission efficiency by up to 28%.

Inspec keywords: inductive power transmission; metamaterials; permeability; magnetic fields; electromagnetic metamaterials; coils; finite element analysis; magnetic permeability

Other keywords: effective permeability characteristics; WPTS; power transmission efficiency; magnetic field modulation; inhomogeneous electromagnetic metamaterial design method; designed IEMMM; two-dimensional IEMMM; significant progress; shaped coil unit cell; homogeneous electromagnetic metamaterial; finite element simulation results; modulated regulation; wireless power transfer system; negative permeability medium; inhomogeneous EMMM; range

Subjects: Wireless power transmission; Numerical approximation and analysis; Numerical analysis; Microwave materials and structures; Optimisation techniques; Finite element analysis

References

    1. 1)
      • 8. Sun, K., Fan, R., Zhang, X., et al: ‘An overview of metamaterials and their achievements in wireless power transfer’, J. Mater. Chem. C, 2018, 6, (12), pp. 29252943.
    2. 2)
      • 6. Du, S., Chan, E.K., Wen, B., et al: ‘Wireless power transfer using oscillating magnets’, IEEE Trans. Ind. Electron., 2018, 65, (8), pp. 62596269.
    3. 3)
      • 11. Dong, Y., Li, W., Yang, X., et al: ‘Design of unit cell for metamaterials applied in a wireless power transfer system’. Emerging Technologies: Wireless Power Transfer, Chongqing, China, May 2017, pp. 143147.
    4. 4)
      • 10. Pendry, J.B., Holden, A.J., Robbins, D.J., et al: ‘Magnetism from conductors and enhanced nonlinear phenomena’, IEEE Trans. Microw. Theory Tech., 1999, 47, (11), pp. 20752084.
    5. 5)
      • 17. Lipworth, G., Ensworth, J., Seetharam, K., et al: ‘Magnetic metamaterial superlens for increased range wireless power transfer’, Sci. Rep., 2015, 4, (1), p. 3966.
    6. 6)
      • 19. Kurs, A., Karalis, A., Moffatt, R., et al: ‘Wireless power transfer via strongly coupled magnetic resonances’, Science, 2007, 317, (5834), pp. 8386.
    7. 7)
      • 9. Zhang, Z., Pang, H., Georgiadis, A., et al: ‘Wireless power transfer – an overview’, IEEE Trans. Ind. Electron., 2019, 66, (2), pp. 10441058.
    8. 8)
      • 4. Jayathurathnage, P.K.S., Alphones, A., Vilathgamuwa, D.M., et al: ‘Optimum transmitter current distribution for dynamic wireless power transfer with segmented array’, IEEE Trans. Microw. Theory Tech., 2018, 66, (1), pp. 346356.
    9. 9)
      • 1. Nguyen, M.Q., Hughes, Z., Woods, P., et al: ‘Field distribution models of spiral coil for misalignment analysis in wireless power transfer systems’, IEEE Trans. Microw. Theory Tech., 2014, 62, (4), pp. 920930.
    10. 10)
      • 3. Kim, J., Kim, D.H., Park, Y.J.: ‘Free-positioning wireless power transfer to multiple devices using a planar transmitting coil and switchable impedance matching networks’, IEEE Trans. Microw. Theory Tech., 2016, 64, (11), pp. 37143722.
    11. 11)
      • 16. Ranaweera, A.L.A.K., Duong, T.P., Lee, B.S., et al: ‘Experimental investigation of 3D metamaterial for mid-range wireless power transfer’. Wireless Power Transfer Conf., Jeju, South Korea, May 2014, pp. 9295.
    12. 12)
      • 12. Rajagopalan, A., RamRakhyani, A.K., Schurig, D., et al: ‘Improving power transfer efficiency of a short-range telemetry system using compact metamaterials’, IEEE Trans. Microw. Theory Tech., 2014, 62, (4), pp. 947955.
    13. 13)
      • 20. Ji, L., Wang, L., Liao, C., et al: ‘Simultaneous wireless power and bidirectional information transmission with a single-coil, dual-resonant structure’, IEEE Trans. Ind. Electron., 2019, 66, (5), pp. 40134022.
    14. 14)
      • 18. Tonti, E.: ‘Finite formulation of electromagnetic field’, IEEE Trans. Magn., 2002, 38, (2), pp. 333336.
    15. 15)
      • 7. Cho, Y., Lee, S., Kim, D.H., et al: ‘Thin hybrid metamaterial slab with negative and zero permeability for high efficiency and low electromagnetic field in wireless power transfer systems’, IEEE Trans. Electromagn. Compat., 2018, 60, (4), pp. 10011009.
    16. 16)
      • 2. Ha-Van, N., Seo, C.: ‘Analytical and experimental investigations of omnidirectional wireless power transfer using a cubic transmitter’, IEEE Trans. Ind. Electron., 2018, 65, (2), pp. 13581366.
    17. 17)
      • 15. Li, W., Wang, P., Yao, C., et al: ‘Experimental investigation of 1D, 2D, and 3D metamaterials for efficiency enhancement in a 6.78 MHz wireless power transfer system’. Wireless Power Transfer Conf., Aveiro, Portugal, May 2016, pp. 14.
    18. 18)
      • 13. Cho, Y., Kim, J.J., Kim, D.H., et al: ‘Thin PCB-type metamaterials for improved efficiency and reduced EMF leakage in wireless power transfer systems’, IEEE Trans. Microw. Theory Tech., 2016, 64, (2), pp. 353364.
    19. 19)
      • 5. Liu, C., Jiang, C., Song, J., et al: ‘An effective sandwiched wireless power transfer system for charging implantable cardiac pacemaker’, IEEE Trans. Ind. Electron., 2019, 66, (5), pp. 41084117.
    20. 20)
      • 14. Wu, Q., Li, Y., Chen, Y., et al: ‘Enhanced wireless power transfer using magnetostatic volume modes in anisotropic magnetic metamaterials’. 2018 IEEE Int. Conf. on Industrial Electronics for Sustainable Energy Systems (IESES), 2018, pp. 415420.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0255
Loading

Related content

content/journals/10.1049/iet-map.2019.0255
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading