access icon free Compact on-chip millimetre wave bandpass filters with meandered grounding resonator in 0.13-μm (Bi)-CMOS technology

In this study, an ultra-compact meandered grounding resonator is proposed to design two millimetre wave bandpass filters (BPFs) in a standard 0.13-µm silicon-germanium (Bi)-complementary metal oxide semiconductor (CMOS) technology. The fundamental second-order prototype, namely BPF-I, consists of a pair of proposed resonators and a pair of grounded metal-insulator-metal (MIM) capacitors. To better understand the principle of the second-order BPF-I, an equivalent LC-circuit model and theoretical analysis method are presented in this study. Based on BPF-I, the second-order BPF-II is proposed by adding the additional two pairs of MIM capacitors to improve the frequency selectivity, by means of introducing a transmission zero at lower stopband. Finally, both of the two second-order BPFs are fabricated. The measured results show a good agreement with the full-wave simulation results. The insertion loss of the first BPF-I is 1.79 dB at the centre frequency of 46.6 GHz, and the fractional bandwidth is up to 96.5%. The second BPF-II has a centre frequency at 46.8 GHz with a fractional bandwidth of 94.1%. The minimum insertion loss is 2.08 dB and the lower stopband attenuation is up to 42.7 dB. Moreover, the die sizes of the two compact BPFs, excluding the test pads, are only 0.0197 mm2 (0.104 × 0.190 mm2).

Inspec keywords: BiCMOS integrated circuits; millimetre wave filters; Ge-Si alloys; band-pass filters; bipolar MIMIC

Other keywords: MIM capacitors; ultra-compact meandered grounding resonator; silicon-germanium-BiCMOS technology; grounded metal-insulator-metal capacitors; fractional bandwidth; stopband attenuation; equivalent LC-circuit model; transmission zero; frequency selectivity; size 0.190 mm; size 0.13 mum; size 0.104 mm; compact on-chip millimetre wave bandpass filters; frequency 46.8 GHz; frequency 46.6 GHz; SiGe; second-order BPF-II

Subjects: Microwave integrated circuits; Waveguide and microwave transmission line components; Passive filters and other passive networks; Mixed technology integrated circuits

References

    1. 1)
      • 13. Zhong, Y., Yang, Y., Zhu, X., et al: ‘An on-chip bandpass filter using a broadside-coupled meander line resonator with a defected-ground structure’, IEEE Electron Device Lett.., 2017, 38, (5), pp. 626629.
    2. 2)
      • 22. Hong, J.S., Lancaster, M.J.: ‘Microstip filter for RF/ microwave applications’ (Wiley, Hoboken, NJ, USA, 2001).
    3. 3)
      • 12. Yang, Y., Zhu, H., Zhu, X., et al: ‘A low-loss bandpass filter using edge-coupled resonator with capacitive feeding in (Bi)-CMOS technology’, IEEE Electron Device Lett.., 2018, 39, (6), pp. 787790.
    4. 4)
      • 10. Mahmoud, N., Barakat, A., Abdel-Rahman, A.B., et al: ‘Compact size on-chip 60 GHz H-shaped resonator BPF’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (9), pp. 681683.
    5. 5)
      • 20. Cao, Y., Groves, R.A., Hang, X.J., et al: ‘Frequency-independent equivalent-circuit model for on-chip spiral inductors’, IEEE J. Solid-State Circuits, 2003, 38, (3), pp. 419426.
    6. 6)
      • 18. Zhang, Z., Liao, X.: ‘Micromachined passive bandpass filters based on GaAs monolithic-microwave-integrated-circuit technology’, IEEE Trans. Electron Devices, 2013, 60, (1), pp. 221228.
    7. 7)
      • 3. Li, Y., Chen, J., Qin, W., et al: ‘Millimetre-wave low-temperature co-fired ceramic bandpass filter with independently controllable dual passbands’, IET Microw. Antennas Propag., 2017, 11, (11), pp. 15581564.
    8. 8)
      • 11. Yeh, L., Chen, Y., Chuang, H.: ‘A novel ultra-compact and low-insertion-loss 77 GHz CMOS on-chip bandpass filter with adjustable transmission zeros’. 2014 44th European Microwave Conf., Rome, 2014, pp. 10561059.
    9. 9)
      • 8. Sun, S., Shi, J., Zhu, L., et al: ‘Millimeter-wave bandpass filters by standard 0.18-µm CMOS technology’, IEEE Electron Device Lett.., 2007, 28, (3), pp. 220222.
    10. 10)
      • 6. Wong, S.W., Chen, R.S., Wang, K., et al: ‘U-Shape slots structure on substrate integrated waveguide for 40-GHz bandpass filter using LTCC technology’, IEEE Trans. Compon., Packag., Manuf. Technol., 2015, 5, (1), pp. 128134.
    11. 11)
      • 4. Guo, Q., Zhang, X.Y., Gao, L., et al: ‘Microwave and millimeter-wave LTCC filters using discriminating coupling for mode suppression’, IEEE Trans. Compon., Packag., Manuf. Technol., 2016, 6, (2), pp. 272281.
    12. 12)
      • 5. Wong, S.W., Wang, K., Chen, Z., et al: ‘Electric coupling structure of substrate integrated waveguide (SIW) for the application of 140-GHz bandpass filter on LTCC’, IEEE Trans. Compon., Packag., Manuf. Technol., 2014, 4, (2), pp. 316322.
    13. 13)
      • 14. Yang, Y., Liu, H., Hou, Z.J., et al: ‘Compact on-chip bandpass filter with improved in-band flatness and stopband attenuation in 0.13-µm (Bi)-CMOS technology’, IEEE Electron Device Lett.., 2017, 38, (10), pp. 13591362.
    14. 14)
      • 2. Guo, Q., Zhang, X.Y., Gao, L., et al: ‘Novel millimeter-wave bandpass filter using discriminating coupling for fundamental mode suppression’. Proc. 2014 3rd Asia-Pacific Conf. on Antennas and Propagation, Harbin, 2014, pp. 12031205.
    15. 15)
      • 19. Gil, J., Shin, H.: ‘A simple wide-band on-chip inductor model for silicon-based RF ICs’, IEEE Trans. Microw. Theory Tech., 2003, 51, (9), pp. 20232028.
    16. 16)
      • 16. Yang, Y., Zhu, X., Xue, Q.: ‘Design of an ultracompact on-chip bandpass filter using mutual coupling technique’, IEEE Trans. Electron Devices, 2018, 65, (3), pp. 10871093.
    17. 17)
      • 7. Chien, W., Lin, C.M., Smingh, P.K., et al: ‘MMIC compact filters with third harmonic suppression for V-band applications’, IEEE Microw. Wirel. Compon. Lett., 2011, 21, (6), pp. 295297.
    18. 18)
      • 15. Yang, Y., Zhu, X., Dutkiewicz, E., et al: ‘Design of a miniaturized on-chip bandpass filter using edge-coupled resonators for millimeter-wave applications’, IEEE Trans. Electron Devices, 2017, 64, (9), pp. 38223828.
    19. 19)
      • 1. Cai, P., Ma, Z.W., Hitoshi, K.: ‘A wideband quasi-millimeter-wave bandpass filter using dual-mode resonator with 5/4 wavelength folded stubs’, Microw. Opt. Technol. Lett., 2009, 51, pp. 17081711.
    20. 20)
      • 21. Wei, J., Wang, Z.: ‘Frequency-independent T equivalent circuit for on-chip spiral inductors’, IEEE Electron Device Lett.., 2010, 31, (9), pp. 933935.
    21. 21)
      • 9. Chang, S.C., Chen, Y.M., Chang, S.F., et al: ‘Compact millimeter-wave CMOS bandpass filters using grounded pedestal stepped-impedance technique’, IEEE Trans. Microw. Theory Tech., 2010, 58, (12), pp. 38503858.
    22. 22)
      • 17. Li, M., Yang, Y., Xu, K.D., et al: ‘Microwave on-chip bandpass filter based on hybrid coupling technique’, IEEE Trans. Electron Devices, 2018, 65, (12), pp. 54535459.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0192
Loading

Related content

content/journals/10.1049/iet-map.2019.0192
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading