access icon free Systematic experimental analysis of an optical sensing microwave low-noise amplifier

This study presents a systematic experimental analysis of the noise figure and the gain of an optical sensing low-noise amplifier (LNA) in the X-band region (8.5–10.5 GHz). The study has been carried out with the purpose of analysing the effects of a 635 nm optical radiation on the gain and noise figure of the LNA, by modifying the bias operating points. Upon varying the bias conditions from those suggested into the component datasheet towards the device pinch-off, the role of the light exposure changes from causing degradation of the gain and noise figure into a clear performance enhancement. In the middle, a bias condition is found where the above LNA parameters become unresponsive to light exposure. Whilst the detrimental role played by the strong gate current increase under light exposure on the noise figure degradation is already clear, the experimental results show that close to pinch-off this effect is completely overcome by the drain current and transconductance increases.

Inspec keywords: microwave amplifiers; low noise amplifiers; optical sensors

Other keywords: noise figure degradation; bias condition; bias operating points; X-band region; wavelength 635.0 nm; light exposure changes; optical radiation; optical sensing microwave low-noise amplifier; LNA parameters; frequency 8.5 GHz to 10.5 GHz; component datasheet

Subjects: Amplifiers; Sensing devices and transducers

References

    1. 1)
      • 9. Caddemi, A., Cardillo, E., Salvo, G., et al: ‘Microwave effects of UV light exposure of a GaN HEMT: measurements and model extraction’, Microelectron. Reliab., 2016, 65, pp. 310317.
    2. 2)
      • 17. Caddemi, A, Cardillo, E, Patanè, S, et al: ‘An accurate experimental investigation of an optical sensing microwave amplifier’, IEEE Sens. J., 2018, 18, (22), pp. 92149221.
    3. 3)
      • 18. Caddemi, A., Cardillo, E., Crupi, G.: ‘Comparative analysis of microwave low-noise amplifiers under laser illumination’, Microw. Opt. Tech. Lett., 2016, 58, (10), pp. 24372443.
    4. 4)
      • 4. Cha, E., Moschetti, G., Wadefalk, N., et al: ‘Two-finger InP HEMT design for stable cryogenic operation of ultra-low-noise Ka- and Q-band LNAs’, IEEE Trans. Microw. Theory Techn., 2017, 65, (12), pp. 51715180.
    5. 5)
      • 14. Escotte, L., Grenier, K., Tartarin, J.G., et al: ‘Microwave noise parameters of InGaAs pseudomorphic HEMTs under optical illumination’, IEEE Trans. Microw. Theory Tech., 1998, 46, pp. 17881789.
    6. 6)
      • 12. Gautier, J.L., Pasquet, D, Pouvil, P.: ‘Optical effect on the static and dynamic characteristics of a GaAs MESFET’, IEEE Trans. Microw. Theory Tech., 1985, 33, (9), pp. 819822.
    7. 7)
      • 11. Caddemi, A., Cardillo, E., Patanè, S., et al: ‘Light exposure effects on the dc kink of AlGaN/GaN HEMT's’, Electronics, 2019, 8, (6), p. 9.
    8. 8)
      • 3. Zamanillo, J.M., Portilla, J., Navarro, C., et al: ‘Optical ports: next generation of MMIC control devices?’. 35th European Microwave Conf., Paris, France, October 2005, pp. 13911394.
    9. 9)
      • 2. Jit, S., Bandhawakar, G., Pal, B.B.: ‘Analytical modeling of a DCFL inverter using normally-off GaAs MESFETs under dark and illuminated conditions’, Solid-State Electron., 2005, 49, (4), pp. 628633.
    10. 10)
      • 7. Gavell, M., Angelov, I., Ferndahl, M., et al: ‘A V-band stacked HEMT power amplifier with 25-dBm saturated output power in 0.1 μm InGaAs technology’, IEEE Trans. Microw. Theory Tech., 2016, 64, (12), pp. 42324240.
    11. 11)
      • 8. Caddemi, A., Cardillo, E., Crupi, G.: ‘Microwave noise parameter modeling of a GaAs HEMT under optical illumination’, Microw. Opt. Tech. Lett., 2016, 58, (1), pp. 151154.
    12. 12)
      • 5. Cuadrado-Calle, D., George, D., Fuller, G., et al: ‘Broadband MMIC LNAs for ALMA band 2 + 3 with noise temperature below 28 K’, IEEE Trans. Microw. Theory Tech, 2017, 65, (5), pp. 15891596.
    13. 13)
      • 6. Nguyen, T.T., Riddle, A., Fujii, K., et al: ‘Development of wideband and high IIP3 millimeter-wave mixers’, IEEE Trans. Microw. Theory Tech., 2016, 65, (8), pp. 30713079.
    14. 14)
      • 15. de Salles, A.A., Romero, M. A.: ‘Al0.3Ga0.7/GaAs HEMT's under optical illumination’, IEEE Trans. Microw. Theory Tech., 1991, 39, pp. 20102017.
    15. 15)
      • 10. Caddemi, A., Cardillo, E., Crupi, G.: ‘Light activation of noise at microwave frequencies: a study on scaled GaAs HEMT's’, IET Circuits Devices Syst., 2018, 12, (3), pp. 242248.
    16. 16)
      • 1. Sorianello, V., Colace, L., Rajamani, S., et al: 'Design and simulation of optically controlled field effect transistors', Phys. Status Solidi C, 2014, 11, pp. 8184.
    17. 17)
      • 19. Datasheet of MGF4953A Mitsubishi Electric Corporation, Mitsubishi Electric Corporation, April 2011.
    18. 18)
      • 13. Thomasian, A., Rezazadeh, A., Everard, J., et al: ‘Experimental evidence for trap-induced photoconductive kink in AlGaAs/GaAs HEMT's’, Electron. Lett., 1990, 26, (14), pp. 10941095.
    19. 19)
      • 16. Caddemi, A., Cardillo, E.: ‘Optical control of gain amplifiers at microwave frequencies’. Computing and Electromagnetics Int. Workshop, Barcelona, Spain, June 2017, pp. 5152.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0163
Loading

Related content

content/journals/10.1049/iet-map.2019.0163
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading