access icon free Miniaturised and radiation efficient implantable antenna using reactive impedance surface for biotelemetry

This study presents the realisation of reactive impedance surface (RIS) in an implantable environment to design a compact wideband antenna for biotelemetry communication. The antenna is designed to operate at 2.45 GHz industrial, scientific and medical (ISM) band using a one-layer skin model. The proposed mushroom-based circular RIS successively improves the impedance matching, gain, and bandwidth of the antenna. The improvement in −10 dB impedance bandwidth and gain is observed by 270 MHz and 7 dB, respectively. The overall volume of the antenna is compact and measured only 99.69 mm3. The peak specific absorption rate value of the loaded antenna is noted at 595 W/kg for input power of 1 W, while the radiation efficiency of the antenna is noted by 7.5% at the resonance. The fabricated prototype is inserted into the minced pork and dipped into a skin mimicking gel for the measurement purpose. Furthermore, the link margin has been analysed, which predicts a possible transmission range up to 40 m for a signal bit rate ≤5 Mbps. The impact of associated circuit components on the antenna performance has also been investigated.

Inspec keywords: biomedical telemetry; impedance matching; UHF antennas; skin; antenna radiation patterns; broadband antennas

Other keywords: one-layer skin model; implantable environment; bandwidth 270 MHz; power 1.0 W; radiation efficient implantable antenna; mushroom-based circular RIS; reactive impedance surface; associated circuit components; compact wideband antenna; efficiency 7.5 percent; frequency 2.45 GHz; impedance matching; measurement purpose; gain 7.0 dB; specific absorption rate; antenna performance; bit rate 5 Mbit/s; biotelemetry communication; miniaturised implantable antenna; ISM band; loaded antenna; skin mimicking gel

Subjects: Telemetry; Biomedical communication; Telemetering systems; Single antennas

References

    1. 1)
      • 6. Kiourti, A., Costa, J.R., Fernandes, C.A., et al: ‘A broadband implantable and a dual-band on-body repeater antenna: design and transmission performance’, IEEE Antennas Wirel. Propag. Lett., 2014, 62, (6), pp. 28992908.
    2. 2)
      • 19. Wu, J., Sarabandi, K.: ‘Reactive impedance surface TM mode slow wave for patch antenna miniaturization’, IEEE Antennas Propag. Mag., 2014, 56, (6), pp. 279293.
    3. 3)
      • 16. Mosallaei, H., Sarabandi, K.: ‘Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate’, IEEE Trans. Antennas Propag., 2004, 52, (9), pp. 24032414.
    4. 4)
      • 27. Liu, C., Guo, Y.X., Xiao, S.: ‘Capacitively loaded circularly polarized implantable patch antenna for ISM band biomedical applications’, IEEE Trans. Antennas Propag., 2014, 62, (5), pp. 24072417.
    5. 5)
      • 17. Xu, H., Wang, G., Liang, J., et al: ‘Compact circularly polarized antennas combining meta–surfaces and strong space-filling meta–resonators’, IEEE Trans. Antennas Propag., 2013, 61, (7), pp. 34423450.
    6. 6)
      • 12. Das, S., Mitra, D.: ‘A compact wideband flexible implantable slot antenna design with enhanced gain’, IEEE Trans. Antennas Propag., 2018, 66, (8), pp. 43094314.
    7. 7)
      • 20. Cai, T., Wang, G.-M., Zhang, X.-F., et al: ‘Low-profile compact circularly-polarized antenna based on fractal metasurface and fractal resonator’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 10721076.
    8. 8)
      • 18. Agarwal, K., Nasimuddin, , Alphones, A.: ‘Triple-band compact circularly polarised stacked microstrip antenna over reactive impedance meta-surface for GPS applications’, IET Microw. Antennas Propag., 2014, 8, (13), pp. 10571065.
    9. 9)
      • 29. Karacolak, T., Hood, A.Z., Topsakal, E.: ‘Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring’, IEEE Trans. Microw. Theory Tech., 2008, 56, (4), pp. 10011008.
    10. 10)
      • 11. Alamri, S., Amoudi, A.A., Langley, R.: ‘Gain enhancement of implanted antenna using lens and parasitic ring’, Electron. Lett., 2016, 52, (10), pp. 800801.
    11. 11)
      • 24. Ansys Electromagnetic Suite, HFSS Ver. 18.0, Ansoft Corporation.
    12. 12)
      • 2. Kiourti, A., Nikita, K.S.: ‘A review of implantable patch antennas for biomedical telemetry: challenges and solutions’, IEEE Antennas Propag. Mag., 2012, 54, (3), pp. 210228.
    13. 13)
      • 15. Bhattacharjee, S., Maity, S., Chaudhuri, S.R.B., et al: ‘Metamaterial-inspired wideband biocompatible antenna for implantable applications’, IET Microw. Antennas Propag., 2018, 12, (11), pp. 17991805.
    14. 14)
      • 26. Kumar, C., Guha, D.: ‘Nature of cross-polarized radiations from probe-fed circular microstrip antennas and their suppression using different geometries of defected ground structure (DGS)’, IEEE Trans. Antennas Propag., 2018, 60, (1), pp. 92101.
    15. 15)
      • 23. Samanta, G., Mitra, D., Bhadra Chaudhuri, S.R.: ‘Miniaturization of a patch antenna using circular reactive impedance substrate’, Int. J. RF Microw. Comput. Aided Eng., 2017, 27, (8), pp. 110.
    16. 16)
      • 31. Kim, J., Rahmat-Samii, Y.: ‘Implanted antennas inside a human body: simulations, designs, and characterizations’, IEEE Trans. Microw.Theory Tech., 2004, 52, pp. 19341943.
    17. 17)
      • 4. Tsai, C.-L., Chen, K.-W., Yang, C.-L.: ‘Implantable wideband low-SAR antenna with C-shaped coupled ground’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 15941597.
    18. 18)
      • 28. Merli, F., Bolomey, L., Zurcher, J., et al: ‘Design, realization and measurements of a miniature antenna for implantable wireless communication systems’, IEEE Trans. Antennas Propag., 2011, 59, (10), pp. 35443555.
    19. 19)
      • 5. Liu, C., Guo, Y., Xiao, S.: ‘Compact dual-band antenna for implantable devices’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 15081511.
    20. 20)
      • 30. Karacolak, T., Cooper, R., Unlu, E.S., et al: ‘Dielectric properties of porcine skin tissue and in vivo testing of implantable antennas using pigs as model animals’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 16861689.
    21. 21)
      • 9. Zhang, H., Li, L., Liu, C.: ‘Miniaturized implantable antenna integrated with split resonate rings for wireless power transfer and data telemetry’, Microw. Opt. Technol. Lett., 2017, 59, (3), pp. 710714.
    22. 22)
      • 14. Gani, I., Yoo, H.: ‘Multi-band antenna system for skin implant’, IEEE Micro. Wirel. Compon. Lett., 2016, 26, (4), pp. 294296.
    23. 23)
      • 7. Yang, Z.-J., Xiao, S.-Q., Zhu, L., et al: ‘A circularly polarized implantable antenna for 2.4 GHz ISM band biomedical applications’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 25542557.
    24. 24)
      • 21. Chatterjee, J., Mohan, A., Dixit, V.: ‘Broadband circularly polarized H-shaped patch antenna using reactive impedance surface’, IEEE Antennas Wirel. Propag. Lett., 2018, 17, pp. 625628.
    25. 25)
      • 10. Liu, X.Y., Wu, Z.T., Fan, Y.: ‘A miniaturized CSRR loaded wide-beamwidth circularly polarized implantable antenna for subcutaneous real-time glucose monitoring’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 577580.
    26. 26)
      • 32. IEEE Std C95.1, 1999: ‘IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz’, 1999, pp. 1–83.
    27. 27)
      • 1. Nikita, K.S.: ‘Handbook of biomedical telemetry’ (Wiley-IEEE Publishers, New York, NY, USA, 2014).
    28. 28)
      • 22. Sarrazin, J., Lepage, A.-C., Begaud, X.: ‘Circular high-impedance surface characterization’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 260263.
    29. 29)
      • 13. Zhang, H., Li, L., Liu, C., et al: ‘Miniaturized implantable antenna integrated with split resonate rings for wireless power transfer and data telemetry’, Microw. Opt. Technol. Lett., 2017, 59, (3), pp. 710714.
    30. 30)
      • 25. Lee, K.F., Luk, K.M., Tam, P.Y.: ‘Cross polarisation characteristics of circular patch antennas’, Electron. Lett., 1992, 28, (6), pp. 587589.
    31. 31)
      • 3. Xu, L.-J., Guo, Y.-X., Wu, W.: ‘Bandwidth enhancement of an implantable antenna’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 15101513.
    32. 32)
      • 8. Shah, S.A.A., Yoo, H.: ‘Scalp-implantable antenna systems for intracranial pressure monitoring’, IEEE Trans. Antennas Propag., 2018, 66, (4), pp. 21702173.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0132
Loading

Related content

content/journals/10.1049/iet-map.2019.0132
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading