access icon free Experimental and computational study on epoxy resin reinforced with micro-sized OPEFB using rectangular waveguide and finite element method

Epoxy resin (ER) composites reinforced with micro-sized oil palm empty fruit bunch (OPEFB) were fabricated to improve the biodegradability of electromagnetic interference connector gasket. The dielectric properties, transmission coefficient |S 21|, reflection coefficient |S 11|, reflection loss, power loss and shielding effectiveness were studied at a frequency range of 8–12 GHz. OPEFB–ER composites were prepared by varying the percentages of OPEFB (0, 5, 10, 15, 20, 25, 30 and 40%) at room temperature (25°C ±2). Dielectric constant (ɛ′), loss factor (ɛ″), reflection and transmission coefficients of the composites were measured using rectangular waveguide connected to vector network analyser. In addition, ɛ′ and ɛ″ were used in finite element method technique to obtain |S 11| and |S 21|. The results showed that the dielectric properties increased but |S 11| and |S 21| decreased with increasing OPEFB percentage in the composites. The shielding effectiveness, power loss and reflection loss increased with increasing OPEFB percentage in the composites. The simulated and measured results of |S 11| and |S 21| were in good agreement.

Inspec keywords: rectangular waveguides; electromagnetic shielding; finite element analysis; electromagnetic interference; filled polymers; biodegradable materials; microwave materials; network analysers; gaskets; permittivity; resins

Other keywords: dielectric properties; room temperature; reflection loss; frequency range; reflection coefficient; transmission coefficient; shielding effectiveness; loss factor; temperature 293.0 K to 298.0 K; electromagnetic interference connector gasket; power loss; epoxy resin; microsized oil palm empty fruit bunch; rectangular waveguide; frequency 8.0 GHz to 12.0 GHz; dielectric constant; OPEFB percentage; finite element method technique; OPEFB–ER composites; microsized OPEFB

Subjects: Engineering materials; Finite element analysis; Numerical analysis; Mechanical components; Electromagnetic compatibility and interference; Environmental issues

References

    1. 1)
      • 5. Rosazley, R., Shazana, M., Izzati, M., et al: ‘Characterization of nanofibrillated cellulose produced from oil palm empty fruit bunch fibers (OPEFB) using ultrasound’, J. Contemp. Issues Thought, 2016, 6, pp. 3037.
    2. 2)
      • 23. Boon, M., Saw, W.S., Mariatti, M.: ‘Magnetic, dielectric and thermal stability of Ni–Zn ferrite-epoxy composite thin films for electronic applications’, J. Magn. Magn. Mater., 2012, 324, (5), pp. 755760.
    3. 3)
      • 3. Saba, N., Tahir, P., Jawaid, M.: ‘A review on potentiality of nano filler/natural fiber filled polymer hybrid composites’, Polymers, 2014, 6, (8), pp. 22472273.
    4. 4)
      • 15. Dang, Z.-M., Yu, Y.-F., Xu, H.-P., et al: ‘Study on microstructure and dielectric property of the BaTiO3/epoxy resin composites’, Compos. Sci. Technol., 2008, 68, (1), pp. 171177.
    5. 5)
      • 19. Ahmad, A.F., Abbas, Z., Obaiys, S.J., et al: ‘Attenuation performance of polymer composites incorporating NZF filler for electromagnetic interference shielding at microwave frequencies’, J. Mater. Sci. Eng., 2016, 2016, (5), pp. 611.
    6. 6)
      • 9. Radoman, T.S., Džunuzović, J.V., Jeremić, K.B., et al: ‘Improvement of epoxy resin properties by incorporation of TiO2 nanoparticles surface modified with gallic acid esters’, Mater. Des. (1980–2015), 2014, 62, pp. 158167.
    7. 7)
      • 7. Yeow, T.K., Lik, W.T.: ‘Epoxy EFB palm fibre mat composites: the effects of fibre weight fraction on mechanical behaviour’, ARPN J. Eng. Appl. Sci., 2015, 10, (15), pp. 65786582.
    8. 8)
      • 8. Gu, J., Yang, X., Lv, Z., et al: ‘Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity’, Int. J. Heat Mass Transf., 2016, 92, pp. 1522.
    9. 9)
      • 11. Ricciardi, M., Papa, I., Langella, A., et al: ‘Mechanical properties of glass fibre composites based on nitrile rubber toughened modified epoxy resin’, Compos. B, Eng., 2018, 139, pp. 259267.
    10. 10)
      • 4. Kamsani, N., Salleh, M.M., Basri, S.A., et al: ‘Effects of surfactant on the enzymatic degradation of oil palm empty fruit bunch (OPEFB)’, Waste Biomass Valorization, 2018, 9, (5), pp. 845852.
    11. 11)
      • 16. Abdul Khalil, H., Noorshashillawati Azura, M., Issam, A., et al: ‘Oil palm empty fruit bunches (OPEFB) reinforced in new unsaturated polyester composites’, J. Reinf. Plast. Compos., 2008, 27, (16–17), pp. 18171826.
    12. 12)
      • 6. Ahmad, A., Abbas, Z., Obaiys, S., et al: ‘Improvement of dielectric, magnetic and thermal properties of OPEFB fibre–polycaprolactone composite by adding Ni–Zn ferrite’, Polymers, 2017, 9, (2), p. 12.
    13. 13)
      • 18. Razak, N., Kalam, A.: ‘Effect of OPEFB size on the mechanical properties and water absorption behaviour of OPEFB/PPnanoclay/PP hybrid composites’, Procedia Eng., 2012, 41, pp. 15931599.
    14. 14)
      • 10. Saba, N., Jawaid, M., Alothman, O.Y., et al: ‘Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications’, J. Reinf. Plast. Compos., 2016, 35, (6), pp. 447470.
    15. 15)
      • 12. Soleimani, H., Abbas, Z., Khalid, K., et al: ‘Determination of reflection and transmission coefficient of PTFE at X-band frequency using NRW and FEM methods’, Solid State Sci. Technol., 2009, 17, (2), pp. 3242.
    16. 16)
      • 20. Ahmad, A.F., Abbas, Z., Obaiys, S.J., et al: ‘Permittivity properties of nickel zinc ferrite-oil palm empty fruit bunch-polycaprolactone composite’, Procedia. Chem., 2016, 19, pp. 603610.
    17. 17)
      • 14. Singha, S., Thomas, M.J.: ‘Dielectric properties of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 1223.
    18. 18)
      • 2. Verma, P., Saini, P., Malik, R.S., et al: ‘Excellent electromagnetic interference shielding and mechanical properties of high loading carbon-nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder’, Carbon, 2015, 89, pp. 308317.
    19. 19)
      • 1. Saini, P., Arora, M., Gupta, G., et al: ‘High permittivity polyaniline–barium titanate nanocomposites with excellent electromagnetic interference shielding response’, Nanoscale, 2013, 5, (10), pp. 43304336.
    20. 20)
      • 17. Ratnam, C.T., Raju, G., Yunus, W.M.Z.W.: ‘Oil palm empty fruit bunch (OPEFB) fiber reinforced PVC/ENR blend-electron beam irradiation’, Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At., 2007, 265, (2), pp. 510514.
    21. 21)
      • 21. Ahmad, A.F., Abbas, Z., Obaiys, S.J., et al: ‘Theoretical and numerical approaches for determining the reflection and transmission coefficients of OPEFB-PCL composites at X-band frequencies’, PloS One, 2015, 10, (10), p. e0140505.
    22. 22)
      • 22. Sreekumar, P., Saiter, J.M., Joseph, K., et al: ‘Electrical properties of short sisal fiber reinforced polyester composites fabricated by resin transfer molding’, Compos. A, Appl. Sci. Manuf., 2012, 43, (3), pp. 507511.
    23. 23)
      • 13. Pattanaik, A., Bhuyan, S., Samal, S., et al: ‘Dielectric properties of epoxy resin fly ash composite’, in Ray, B.C., Mandal, A., Basu, A., et al (eds): ‘IOP conference series: materials science and engineering’ (IOP Publishing, Bristol, UK, 2016) 115, (1), pp. 17.
    24. 24)
      • 24. Fan, M., Fu, F.: ‘Advanced high strength natural fibre composites in construction’ (Woodhead Publishing, Cambridge, UK, 2016).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2019.0085
Loading

Related content

content/journals/10.1049/iet-map.2019.0085
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading