Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Machine-learning-based prediction methods for path loss and delay spread in air-to-ground millimetre-wave channels

The unmanned aerial vehicles (UAVs) have been widely applied in various fields due to their advantages like high mobility and low cost. Reliable communication is the premise to ensure the connectivity between UAV nodes. To provide reasonable references for the design, deployment, and operation of UAV communication systems, the precise prediction of radio channel parameters are required. In this study, the authors propose prediction methods for path loss and delay spread in air-to-ground millimetre-wave channels based on machine learning. Random forest and K-nearest-neighbours are the algorithms employed in the methods. Then, a feature selection scheme is proposed to further improve the prediction accuracy and generalisation performance of the machine-learning-based methods. Generally, machine learning algorithms require massive data for training purpose. However, measuring data is time-consuming and costly, especially when the scenario or frequency changes. Therefore, transfer learning methods are introduced to predict path loss with limited data. The proposed methods for path loss prediction are compared to Okumura–Hata and COST-231 Hata models. The lognormal distribution is the contrast model in delay spread prediction. Based on the data generated by ray-tracing software, the new methods have a smaller root mean square errors than contrast models.

References

    1. 1)
      • 2. Xiao, Z., Xia, P., Xia, X. G.: ‘Enabling UAV cellular with millimeter-wave communication: potentials and approaches’, IEEE Commun. Mag., 2016, 54, (5), pp. 6673.
    2. 2)
      • 22. Friedman, J.H.: ‘Greedy function approximation: a gradient boosting machine’, Ann. Stat., 2001, 29, (5), pp. 11891232.
    3. 3)
      • 4. Mcdonnell, J.T.E., Spiller, T.P., Wilkinson, T.A.: ‘RMS delay spread in indoor LOS environments at 5.2 GHz’, Electron. Lett., 1998, 34, (11), pp. 11491150.
    4. 4)
      • 1. Zeng, Y., Zhang, R., Lim, T.J.: ‘Wireless communications with unmanned aerial vehicles: opportunities and challenges’, IEEE Commun. Mag., 2016, 54, (5), pp. 3642.
    5. 5)
      • 3. Ayadi, M., Ben Zineb, A., Tabbane, S.: ‘A UHF path loss model using learning machine for heterogeneous networks’, IEEE Trans. Antennas Propag., 2017, 65, (7), pp. 36753683.
    6. 6)
      • 30. Chen, R., Shi, T., Lv, X., et al: ‘Small-scale fading characterization for railway wireless channels’. IEEE Int. Symp. Antennas Propag., Fajardo, Puerto Rico, 26 June–1 July 2016, pp. 17011702.
    7. 7)
      • 9. Wang, K., Zhang, Â.R.N., Wu, L., et al: ‘Path loss measurement and modeling for low-altitude UAV access channels’. Proc. 2017 IEEE 86th Vehicular Technology Conf. (VTC-Fall), Toronto, Canada, 2017, pp. 15.
    8. 8)
      • 16. Khawaja, W., Ozdemir, O., Guvenc, I.: ‘UAV Air-to-Ground channel characterization for mmWave systems’. Proc. 2017 IEEE 86th Vehicular Technology Conf. (VTC-Fall), Toronto, Canada, 2017, pp. 15.
    9. 9)
      • 7. Cai, X., Gonzalez-Plaza, A., Alonso, D., et al: ‘Low altitude UAV propagation channel modeling’. Proc. 2017 11th Eur. Conf. Antennas Propag. (EuCAP), Paris, France, March 2017, pp. 14431447.
    10. 10)
      • 29. Tanghe, E., Joseph, W., De Bruyne, J., et al: ‘Statistical modeling of power delay profiles and small-scale fading in industrial environments’. Antennas Propag. Soc. Int. Symp., Charleston, SC, USA, June 2009, pp. 14.
    11. 11)
      • 24. Mededovic, P., Veletic, M., Blagojevic, Z.: ‘Wireless insite software verification via analysis and comparison of simulation and measurement results’. Proc. 35th Int. Convention MIPRO, Opatija, Croatia, 2012, 1, pp. 776781.
    12. 12)
      • 18. Ozdemir, A.R., Alkan, M., Kabak, M., et al: ‘The prediction of propagation loss of FM radio station using artificial neural network’, J. Electromagn. Anal. Appl., 2014, 6, (11), pp. 358365.
    13. 13)
      • 1. Zeng, Y., Zhang, R., Lim, T.J.: ‘Wireless communications with unmanned aerial vehicles: opportunities and challenges’, IEEE Commun. Mag., 2016, 54, (5), pp. 3642.
    14. 14)
      • 14. Al-Kinani, A., Wang, C. X., Zhou, L., et al: ‘optical wireless communication channel measurements and models’, IEEE Commun. Surv. Tuts., 2018, 20, (3), pp. 19391962.
    15. 15)
      • 19. Zhang, Y., Wen, J. X., Yang, G.S., et al: ‘Air-to-Air path loss prediction based on machine learning methods in urban environments’, Wirel. Commun. Mob. Comput., 2018, 2018, pp. 19.
    16. 16)
      • 25. Isabona, J., Srivastava, V.M.: ‘Hybrid neural network approach for predicting signal propagation loss in urban micro-cells’. Proc. 2016 IEEE Reg. 10 Humanitarian Technology Conf. (R10-HTC), Agra, India, December 2016, pp. 15.
    17. 17)
      • 3. Ayadi, M., Ben Zineb, A., Tabbane, S.: ‘A UHF path loss model using learning machine for heterogeneous networks’, IEEE Trans. Antennas Propag., 2017, 65, (7), pp. 36753683.
    18. 18)
      • 5. Al-Kinani, A., Sun, J., Wang, C. X., et al: ‘A 2-D Non-stationary GBSM for vehicular visible light communication channels’, IEEE Trans. Wirel. Commun., 2018, 17, (5), pp. 79817992.
    19. 19)
      • 23. Pan, S.J., Yang, Q.: ‘A survey on transfer learning’, IEEE Trans. Knowl. Data Eng., 2010, 22, (10), pp. 13451359.
    20. 20)
      • 11. Amorim, R., Nguyen, H., Mogensen, P., et al: ‘Radio channel modeling for UAV communication over cellular networks’, IEEE Wirel. Commun. Lett., 2017, 6, (4), pp. 514517.
    21. 21)
      • 22. Friedman, J.H.: ‘Greedy function approximation: a gradient boosting machine’, Ann. Stat., 2001, 29, (5), pp. 11891232.
    22. 22)
      • 6. Sarkar, T.K., Ji, Z., Kim, K., et al: ‘A survey of various propagation models for mobile communication’, IEEE Antennas Propag. Mag., 2005, 45, (3), pp. 5182.
    23. 23)
      • 12. Al-Hourani, A., Gomez, K.: ‘Modeling cellular-to-UAV path-loss for suburban environments’, IEEE Wirel. Commun. Lett., 2018, 7, (1), pp. 8285.
    24. 24)
      • 4. Mcdonnell, J.T.E., Spiller, T.P., Wilkinson, T.A.: ‘RMS delay spread in indoor LOS environments at 5.2 GHz’, Electron. Lett., 1998, 34, (11), pp. 11491150.
    25. 25)
      • 8. Jia, S., Zhang, L., Jia, S., et al: ‘Modeling unmanned aerial vehicles base station in ground-to-air cooperative networks’, IET Commun., 2017, 11, (8), pp. 11871194.
    26. 26)
      • 10. Yang, Z., Zhou, L., Zhao, G., et al: ‘Channel model in the urban environment for unmanned aerial vehicle communications’, Proc. 2018 12th Eur. Conf. Antennas Propag. (EuCAP), London, UK, April 2018, pp. 15.
    27. 27)
      • 20. Abhayawardhana, V.S., Wassell, I.J., Crosby, D., et al: ‘Comparison of empirical propagation path loss models for fixed wireless access systems’. Proc. IEEE 61st Vehicular Technology Conf. (VTC), Stockholm, Sweden, 2005, 1, pp. 7377.
    28. 28)
      • 21. Molina, L.C., Belanche, L., Nebo, A.: ‘Feature selection algorithms: A survey and experimental evaluation’, Proc. IEEE Int. Conf. Data Mining (ICDM), 2003, 4, pp. 306313.
    29. 29)
      • 13. Akpado, K.A., Oguejiofor, O.S., Abe, A., et al: ‘Path loss prediction for a typical mobile communication system in Nigeria using empirical models’, IRACST-Int. J. Comput. Netw. Wirel. Commun. (IJCNWC), 2013, 3, (2), pp. 207211.
    30. 30)
      • 27. McDonnell, J.T.E., Spiller, T.P., Wilkinson, T.A.: ‘Characterization of the spatial distribution of RMS delay spread in indoor LOS wireless environments at 5.2 GHz’. Proc. Int. Symp. on Personal, Indoor and Mobile Radio Communication, Boston, MA, USA, 1998, Vol. 2, pp. 621624.
    31. 31)
      • 15. Wu, Y., Gao, Z., Chen, C., et al: ‘Ray tracing based wireless channel modeling over the sea surface near diaoyu islands’. Proc. int. Conf. on Computational Intelligence Theory, Systems and Applications, Yilan, Taiwan, 2015, pp. 124128.
    32. 32)
      • 2. Xiao, Z., Xia, P., Xia, X. G.: ‘Enabling UAV cellular with millimeter-wave communication: potentials and approaches’, IEEE Commun. Mag., 2016, 54, (5), pp. 6673.
    33. 33)
      • 28. Dimitrakopoulos, G.A., Capsalis, C.N.: ‘Statistical modeling of RMS-delay spread under multipath fading conditions in local areas’, IEEE Trans. Veh. Technol., 2000, 49, (5), pp. 15221528.
    34. 34)
      • 17. Oroza, C.A., Zhang, Z., Watteyne, T., et al: ‘A machine-learning based connectivity model for complex terrain large-scale low-power wireless deployments’, IEEE Trans. Cogn. Commun. Netw., 2017, 3, pp. 576584.
    35. 35)
      • 26. Hata, M.: ‘Empirical formula for propagation loss in land mobile radio services’. IEEE Trans. Veh. Technol., 2013, 29, (3), pp. 317325.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.6187
Loading

Related content

content/journals/10.1049/iet-map.2018.6187
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address