Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Iterative greedy user clustering algorithm for D2D–relay in vehicular communication systems

Device-to-device (D2D) communications help in improving the performance of wireless services in cellular networks via enabling cooperation among mobile users. Further, compared to traditional pairwise cooperation, cluster-wise cooperation can achieve even higher spectral and power efficiency. D2D clustering certainly can be a great supporting technology for the future of intelligent transportation. In this study, the authors investigate the D2D–relay clustering network in the vehicular scenario and propose a new clustering scheme named iterative greedy user clustering (IGUC). By exploiting those vehicles with better channel state, system resources can be saved. Here, they mainly focus on the question which is by applying D2D–relay clustering among vehicles, how much bandwidth could be saved in the uplink. This problem is mathematically formulated into a non-linear binary programming problem with the goal being minimum spectrum usage. Due to the NP-hardness, the low-complexity suboptimal algorithm IGUC is introduced to tackle it. Simulation results show that compared to the non-cooperative uplink system, IGUC saves a considerable proportion of the spectrum. Furthermore, clusters in denser and further areas tend to produce a higher gain. Influence of the fast time-varying characteristic of vehicular wireless channels is also investigated, upon which an adaptive switch mechanism is proposed to further facilitate IGUC.

References

    1. 1)
      • 23. Zheng, K., Liu, F., Zheng, Q., et al: ‘A graph-based cooperative scheduling scheme for vehicular networks’, IEEE Trans. Veh. Technol., 2013, 62, (4), pp. 14501458.
    2. 2)
      • 9. Yan, L., Fang, X., Wang, C.: ‘Position-based limited feedback scheme for railway MU-MIMO systems’, IEEE Trans. Veh. Technol., 2016, 65, (10), pp. 83618370.
    3. 3)
      • 33. Guan, K., Lin, X., He, D., et al: ‘Scenario modules and ray-tracing simulations of millimeter wave and terahertz channels for smart rail mobility’. 2017 11th European Conf. on Antennas and Propagation (EUCAP), Paris, France, March 2017, pp. 113117.
    4. 4)
      • 20. Kollias, G., Adelantado, F., Verikoukis, C.: ‘Spectral efficient and energy aware clustering in cellular networks’, IEEE Trans. Veh. Technol., 2017, 66, (10), pp. 92639274.
    5. 5)
      • 4. Liang, L., Li, G.Y., Xu, W.: ‘Resource allocation for D2D-enabled vehicular communications’, IEEE Trans. Commun., 2017, 65, (7), pp. 31863197.
    6. 6)
      • 22. Zheng, Q., Zheng, K., Sun, L., et al: ‘Dynamic performance analysis of uplink transmission in cluster-based heterogeneous vehicular networks’, IEEE Trans. Veh. Technol., 2015, 64, (12), pp. 55845595.
    7. 7)
      • 14. Meshgi, H., Zhao, D., Zheng, R.: ‘Optimal resource allocation in multicast device-to-device communications underlaying LTE networks’, IEEE Trans. Veh. Technol., 2017, 66, (9), pp. 83578371.
    8. 8)
      • 29. Bali, R.S., Kumar, N., Rodrigues, J.J.P.C.: ‘Clustering in vehicular ad hoc networks: taxonomy, challenges and solutions’, Veh. Commun., 2014, 1, (3), pp. 134152.
    9. 9)
      • 5. Sun, W., StrÃűm, E.G., BrÃd'nnstrÃűm, F., et al: ‘Radio resource management for D2D-based V2V communication’, IEEE Trans. Veh. Technol., 2016, 65, (8), pp. 66366650.
    10. 10)
      • 18. Vanganuru, K., Ferrante, S., Sternberg, G.: ‘System capacity and coverage of a cellular network with D2D mobile relays’. MILCOM 2012–2012 IEEE Military Communications Conf., Orlando, Florida, USA, October 2012, pp. 16.
    11. 11)
      • 25. Bazzi, A., Masini, B. M., Pasolini, G.: ‘V2 V and V2R for cellular resources saving in vehicular applications’. 2012 IEEE Wireless Communications and Networking Conf. (WCNC), Shanghai, 2012, pp. 31993203.
    12. 12)
      • 10. Zeng, Y., Hu, H., Xu, T., et al: ‘User pairing stability in D2D-relay networks’, IEEE Commun. Lett., 2017, 21, (10), pp. 22782281.
    13. 13)
      • 11. Zhao, N., Zhang, X., Yu, F. R., et al: ‘To align or not to align: topology management in asymmetric interference networks’, IEEE Trans. Veh. Technol., 2017, 66, (8), pp. 71647177.
    14. 14)
      • 12. Zhang, R., Li, Y., Wang, C., et al: ‘Performance tradeoff in relay aided D2D-cellular networks’, IEEE Trans. Veh. Technol., 2018, 67, (10), pp. 1014410149.
    15. 15)
      • 16. Yang, Y., Hu, H., Xu, J., et al: ‘Relay technologies for WiMax and LTE-advanced mobile systems’, IEEE Commun. Mag., 2009, 47, (10), pp. 100105.
    16. 16)
      • 27. Ren, M., Zhang, J., Khoukhi, L., et al: ‘A unified framework of clustering approach in vehicular ad hoc networks’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (5), pp. 14011414.
    17. 17)
      • 24. Turcanu, I., Sommer, C., Baiocchi, A., et al: ‘Pick the right guy: CQI-based LTE forwarder selection in VANETs’. 2016 IEEE Vehicular Networking Conf. (VNC), Columbus, OH, 2016, pp. 18.
    18. 18)
      • 21. Stanica, R., Fiore, M., Malandrino, F.: ‘Offloading floating car data’. 2013 IEEE 14th Int. Symp. on ‘A World of Wireless, Mobile and Multimedia Networks’ (WoWMoM), Madrid, 2013, pp. 19.
    19. 19)
      • 8. Ren, Y., Liu, F., Liu, Z., et al: ‘Power control in D2D-based vehicular communication networks’, IEEE Trans. Veh. Technol., 2015, 64, (12), pp. 55475562.
    20. 20)
      • 17. Lu, H., Liao, W., Lin, F.Y.: ‘Relay station placement strategy in IEEE 802.16j WiMax networks’, IEEE Trans. Commun., 2011, 59, (1), pp. 151158.
    21. 21)
      • 28. Ji, X., Yu, H., Fan, G., et al: ‘Efficient and reliable cluster-based data transmission for vehicular ad hoc networks’, Mob. Inf. Syst., 2018, 2018, pp. 115.
    22. 22)
      • 19. Zhou, B., Hu, H., Huang, S., et al: ‘Intracluster device-to-device relay algorithm with optimal resource utilization’, IEEE Trans. Veh. Technol., 2013, 62, (5), pp. 23152326.
    23. 23)
      • 3. Li, G., Yang, Z., Chen, S., et al: ‘A traffic flow-based and dynamic grouping-enabled resource allocation algorithm for LTE-D2D vehicular networks’. 2016 IEEE/CIC Int. Conf. on Communications in China (ICCC), Chengdu, China, July 2016, pp. 16.
    24. 24)
      • 6. Cheng, N., Zhou, H., Lei, L., et al: ‘Performance analysis of vehicular device-to-device underlay communication’, IEEE Trans. Veh. Technol., 2017, 66, (6), pp. 54095421.
    25. 25)
      • 1. Cheng, X., Yang, L., Shen, X.: ‘D2d for intelligent transportation systems: a feasibility study’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (4), pp. 17841793.
    26. 26)
      • 30. Harris, B., Schoenfeld, L.: ‘Asymptotic expansions for the coefficients of analytic functions’, Illinois J. Math., 1968, 12, (2), pp. 264277.
    27. 27)
      • 34. Guan, K., Ai, B., Peng, B., et al: ‘Scenario modules, ray-tracing simulations and analysis of millimeter wave and terahertz channels for smart rail mobility’, IET Microw., Antennas Propag., 2018, 12, (4), pp. 501508.
    28. 28)
      • 15. Al-Kanj, L., Dawy, Z.: ‘Optimized energy efficient content distribution over wireless networks with mobile-to-mobile cooperation’. 2010 17th Int. Conf. on Telecommunications, Doha, Qatar, April 2010, pp. 471475.
    29. 29)
      • 2. Liang, L., Peng, H., Li, G.Y., et al: ‘Vehicular communications: a physical layer perspective’, IEEE Trans. Veh. Technol., 2017, 66, (12), pp. 1064710659.
    30. 30)
      • 32. Molisch, A.F., Tufvesson, F., Karedal, J., et al: ‘A survey on vehicle-to-vehicle propagation channels’, IEEE Wirel. Commun., 2009, 16, (6), pp. 1222.
    31. 31)
      • 35. Wang, L., Liu, W., Cheng, Y.: ‘Statistical analysis of mobile-to-mobile Rician fading channel model’, IEEE Trans. Veh. Technol., 2009, 58, (1), pp. 3238.
    32. 32)
      • 26. Afshang, M., Dhillon, H.S., Joo Chong, P.H.: ‘Modeling and performance analysis of clustered device-to-device networks’, IEEE Trans. Wirel. Commun., 2016, 15, (7), pp. 49574972.
    33. 33)
      • 7. Botsov, M., KlÃijgel, M., Kellerer, W., et al: ‘Location dependent resource allocation for mobile device-to-device communications’. 2014 IEEE Wireless Communications and Networking Conf. (WCNC), Istanbul, Turkey, April 2014, pp. 16791684.
    34. 34)
      • 31. Karedal, J., Tufvesson, F., Czink, N., et al: ‘A geometry-based stochastic MIMO model for vehicle-to-vehicle communications’, IEEE Trans. Wirel. Commun., 2009, 8, (7), pp. 36463657.
    35. 35)
      • 13. Gao, C., Li, Y., Zhao, Y., et al: ‘A two-level game theory approach for joint relay selection and resource allocation in network coding assisted D2D communications’, IEEE Trans. Mob. Comput., 2017, 16, (10), pp. 26972711.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.6123
Loading

Related content

content/journals/10.1049/iet-map.2018.6123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address