Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Measurement uncertainty of RC and its reduction techniques for OTA tests: a review

The emerging machine-to-machine (M2M) communications and Internet-of-things techniques bring new challenges in over-the-air (OTA) tests. The inexpensive M2M device usually aims at low-cost and low-power consumption rather than high data rate and, therefore, is usually equipped with a single antenna. Testing such M2M device in massive production requires efficient and cost-effective OTA techniques. The reverberation chamber (RC) is a suitable solution for such tests of M2M (especially large-form-factor) devices. Since RC measurements are in essence stochastic measurements (with repeatable results), uncertainty analyses are of primary importance. This study gives an overview of the start-of-the-art research on measurement uncertainty for both conventional and M2M OTA applications. In addition, new results about mode stirrers and diffusers (for uncertainty reduction) are provided.

References

    1. 1)
      • 40. Hill, D.A.: ‘Boundary fields in reverberation chambers’, IEEE Trans. Electromagn. Compat., 2005, 47, (2), pp. 281290.
    2. 2)
      • 49. Clegg, J., Marvin, A.C., Angus, J.A.S., et al: ‘Method for increasing the mode density in a reverberant screened room’, IEE Proc. Sci. Meas. Technol., 1996, 143, (4), pp. 216220.
    3. 3)
      • 30. Remley, K.A., Pirkl, R.J., Wang, C.-M., et al: ‘Estimating and correcting the device-under-test transfer function in loaded reverberation chambers for over-the-air tests’, IEEE Trans. Electromagn. Compat., 2017, 59, (6), pp. 17241733.
    4. 4)
      • 29. Remley, K.A., Pirkl, R.J., Shah, H.A., et al: ‘Uncertainty from choice of mode-stirring technique in reverberation-chamber measurements’, IEEE Trans. Electromagn. Compat., 2013, 55, (6), pp. 10221030.
    5. 5)
      • 47. Soltane, A., Andrieu, G., Reineix, A.: ‘Doppler spectrum analysis for the prediction of rotating mode stirrer performances in reverberation chamber’, IEEE Trans. Electromagn. Compat., 2018, doi: 10.1109/TEMC.2018.2877906.
    6. 6)
      • 41. Lunden, O., Backstrom, M.: ‘How to avoid unstirred high frequency components in mode stirred reverberation chambers’. IEEE Int. Symp. Electromagnetic Compatibility, Hawaii, July 2007, pp. 14.
    7. 7)
      • 9. Kildal, P.-S., Chen, X., Orlenius, C., et al: ‘Characterization of reverberation chambers for OTA measurements of wireless devices: physical formulations of channel matrix and new uncertainty formula’, IEEE Trans. Antennas Propag., 2012, 60, (8), pp. 38753891.
    8. 8)
      • 7. Wilson, P., Koepke, G., Ladbury, J., et al: ‘Emission and immunity standards: replacing field-at-a-distance measurements with total-radiated-power measurements’. IEEE Int. Symp. Electromagnetic Compatibility, Montreal, Quebec, 2001, pp. 964969.
    9. 9)
      • 50. Petirsch, M., Schwab, A.J.: ‘Investigation of the field uniformity of a mode-stirred chamber using diffusers based on acoustic theory’, IEEE Trans. Electromagn. Compat., 1999, 41, (4), pp. 446451.
    10. 10)
      • 52. Sun, H., Li, Z., Gu, C., et al: ‘Metasurfaced reverberation chamber’, Sci. Rep., 2018, 2018, pp. 110.
    11. 11)
      • 28. Chen, X.: ‘Scaling factor for turn-table platform stirring in reverberation chamber’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 27992802.
    12. 12)
      • 17. Delangre, O., Doncker, P.D., Lienard, M., et al: ‘Analytical angular correlation function in mode-stirred reverberation chamber’, Electron. Lett., 2009, 45, (2), pp. 9091.
    13. 13)
      • 10. Huang, Y., Edwards, D.J.: ‘A novel reverberating chamber: source-stirred chamber’. Proc. Int. Conf. Electromagnetic Compatibility, Edinburgh, UK, September 1992, pp. 120124.
    14. 14)
      • 60. Chen, X.: ‘Generalized statistics of antenna efficiency measurement in a reverberation chamber’, IEEE Trans. Antennas Propag., 2014, 62, (3), pp. 15041507.
    15. 15)
      • 12. Arnaut, L.R., West, P.D.: ‘Evaluation of the NPL untuned stadium reverberation chamber using mechanical and electronic stirring techniques’, NPL Report CEM 11, 1998.
    16. 16)
      • 56. Li, C., Loh, T.-H., Tian, Z., et al: ‘Evaluation of chamber effects on antenna efficiency measurements using non-reference antenna methods in two reverberation chambers’, IET Microw. Antennas Propag., 2017, 11, (11), pp. 15361541.
    17. 17)
      • 6. Test plan for wireless large-form-factor device over-the-air performance. CTIA Certification, 2016.
    18. 18)
      • 58. Chen, X.: ‘On statistics of the measured antenna efficiency in a reverberation chamber’, IEEE Trans. Antennas Propag., 2013, 61, (11), pp. 54175424.
    19. 19)
      • 34. Karandikar, Y.B., Nyberg, D., Jamaly, N., et al: ‘Mode counting in rectangular, cylindrical, and spherical cavities with application to wireless measurements in reverberation chambers’, IEEE Trans. Electromagn. Compat., 2009, 51, (4), pp. 10441046.
    20. 20)
      • 61. Horansky, R.D., Meurs, T.B., North, M.V., et al: ‘Statistical considerations for total isotropic sensitivity of wireless devices measured in reverberation chambers’. EMC Europe, Amsterdam, Netherlands, August 2018, pp. 398403.
    21. 21)
      • 43. Gifuni, A.: ‘Effects of the correction for impedance mismatch on the measurement uncertainty in a reverberation chamber’, IEEE Trans. Electromagn. Compat., 2015, 57, (6), pp. 17241727.
    22. 22)
      • 16. Lemoine, C., Besnier, P., Drissi, M.: ‘Estimating the effective sample size to select independent measurements in a reverberation chamber’, IEEE Trans. Electromagn. Compat., 2008, 50, (2), pp. 227236.
    23. 23)
      • 44. Arnaut, L.R., Moglie, F., Bastianelli, L., et al: ‘Helical stirring for enhanced low-frequency performance of reverberation chambers’, IEEE Trans. Electromagn. Compat., 2017, 59, (4), pp. 10161024.
    24. 24)
      • 11. Cerri, G., Primiani, V.M., Pennesi, S., et al: ‘Source stirring mode for reverberation chambers’, IEEE Trans. Electromagn. Compat., 2005, 47, (4), pp. 815823.
    25. 25)
      • 1. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021 White Paper, 2017.
    26. 26)
      • 33. Huang, Y.: ‘Conducting triangular chambers for EMC measurements’, Meas. Sci. Technol., 1999, 10, pp. 2124.
    27. 27)
      • 25. Chen, X.: ‘Using Akaike information criterion for selecting the field distribution in a reverberation chamber’, IEEE Trans. Electromagn. Compat., 2013, 55, (4), pp. 664670.
    28. 28)
      • 37. Toorn, J.A.D., Remley, K.A., Holloway, C.L., et al: ‘Proximity-effect test for lossy wireless-device measurements in reverberation chambers’, IET Sci. Meas. Technol., 2015, 9, (5), pp. 540546.
    29. 29)
      • 38. Adardour, A., Andrieu, G., Reineix, A.: ‘On the low-frequency optimization of reverberation chambers’, IEEE Trans. Electromagn. Compat., 2014, 56, (2), pp. 266275.
    30. 30)
      • 27. Chen, X., Kildal, P.-S., Lai, S.-H.: ‘Estimation of average Rician K-factor and average mode bandwidth in loaded reverberation chamber’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 14371440.
    31. 31)
      • 21. Chen, X.: ‘Experimental investigation of the number of independent samples and the measurement uncertainty in a reverberation chamber’, IEEE Trans. Electromagn. Compat., 2013, 55, (5), pp. 816824.
    32. 32)
      • 15. Wellander, N., Lunden, O., Bäckström, M.: ‘Experimental investigation and mathematical modeling of design parameters for efficient stirrers in mode-stirred reverberation chambers’, IEEE Trans. Electromagn. Compat., 2007, 49, (1), pp. 94103.
    33. 33)
      • 24. Arnaut, L.R.: ‘Limit distributions for imperfect electromagnetic reverberation’, IEEE Trans. Electromagn. Compat., 2003, 45, (2), pp. 357377.
    34. 34)
      • 59. Senic, D., Williams, D.F., Remley, K.A., et al: ‘Improved antenna efficiency measurement uncertainty in a reverberation chamber at millimeter-wave frequencies’, IEEE Trans. Antennas Propag., 2017, 65, (8), pp. 42094219.
    35. 35)
      • 36. Remley, K.A., Dortmans, J., Weldon, C., et al: ‘Configuring and verifying reverberation chambers for testing cellular wireless devices’, IEEE Trans. Electromagn. Compat., 2016, 58, (3), pp. 661672.
    36. 36)
      • 46. Clegg, J., Marvin, A.C., Dawson, J.F., et al: ‘Optimization of stirrer designs in a reverberation chamber’, IEEE Trans. Electromagn. Compat., 2005, 47, (4), pp. 824832.
    37. 37)
      • 3. Yu, W., Qi, Y., Liu, K., et al: ‘Radiated two-stage method for LTE MIMO user equipment performance evaluation’, IEEE Trans. Electromagn. Compat., 2014, 56, (6), pp. 16911696.
    38. 38)
      • 55. Xu, Q., Xing, L., Tian, Z., et al: ‘Statistical distribution of the enhanced backscatter coefficient in reverberation chamber’, IEEE Trans. Antennas Propag., 2018, 66, (4), pp. 21612164.
    39. 39)
      • 51. Selemani, K., Richalot, E., Legrand, O., et al: ‘Energy localization effects within a reverberation chamber and their reduction in chaotic geometries’, IEEE Trans. Electromagn. Compat., 2017, 59, (2), pp. 325333.
    40. 40)
      • 2. Fan, W., Carreno, X., Sun, F., et al: ‘Emulating spatial characteristics of MIMO channels for OTA testing’, IEEE Trans. Antennas Propag., 2013, 61, (8), pp. 43064314.
    41. 41)
      • 54. Holloway, C.L., Shah, H., Pirkl, R.J., et al: ‘Reverberation chamber techniques for determining the radiation and total efficiency of antennas’, IEEE Trans. Antennas Propag., 2012, 60, (4), pp. 17581770.
    42. 42)
      • 57. Gifuni, A., Flintoft, I.D., Bale, S.J., et al: ‘A theory of alternative methods for measurements of absorption cross section and antenna radiation efficiency using nested and contiguous reverberation chambers’, IEEE Trans. Electromagn. Compat., 2016, 58, (1), pp. 207219.
    43. 43)
      • 18. Moglie, F., Primiani, V.M.: ‘Analysis of the independent positions of reverberation chamber stirrers as a function of their operating conditions’, IEEE Trans. Electromagn. Compat., 2011, 53, (2), pp. 288295.
    44. 44)
      • 35. Chen, X., Kildal, P.-S., Orlenius, C., et al: ‘Channel sounding of loaded reverberation chamber for over-the-air testing of wireless devices – coherence bandwidth versus average mode bandwidth and delay spread’, IEEE Antennas Wirel. Propag. Lett., 2009, 8, pp. 678681.
    45. 45)
      • 32. Monsef, F., Cozza, A.: ‘Average number of significant modes excited in a mode-stirred reverberation chamber’, IEEE Trans. Electromagn. Compat., 2014, 56, (2), pp. 259265.
    46. 46)
      • 13. Remley, K.A., Wang, C.-M.J., Williams, D.F., et al: ‘A significance test for reverberation-chamber measurement uncertainty in total radiated power of wireless devices’, IEEE Trans. Electromagn. Compat., 2016, 58, (1), pp. 207219.
    47. 47)
      • 53. Zheng, Q., Li, Y., Zhang, J., et al: ‘Wideband, wide-angle coding phase gradient metasurfaces based on pancharatnam-berry phase’, Sci. Rep., 2017, 2017, pp. 113.
    48. 48)
      • 23. Gifuni, A., Bastianelli, L., Moglie, F., et al: ‘Base-case model for measurement uncertainty in a reverberation chamber including frequency stirring’, IEEE Trans. Electromagn. Compat., 2018, 60, (6), pp. 16951703.
    49. 49)
      • 19. IEC 61000-4-21: ‘Electromagnetic compatibility (EMC), part 4-21: testing and measurement techniques – reverberation chamber test methods’. Int. Electrotechnical Commission, Edition 2.0, 2011.
    50. 50)
      • 5. Chen, X., Tang, J., Li, T., et al: ‘Reverberation chambers for over-the-air tests: an overview of two decades of research’, IEEE Access, 2018, 6, pp. 4912949143.
    51. 51)
      • 20. Pirkl, R.J., Remley, K.A., Patané, C.S.L.: ‘Reverberation chamber measurement correlation’, IEEE Trans. Electromagn. Compat., 2012, 54, (3), pp. 533544.
    52. 52)
      • 42. Corona, P., Ferrara, G., Migliaccio, M.: ‘Reverberating chamber electromagnetic field in presence of an unstirred component’, IEEE Trans. Electromagn. Compat., 2000, 42, (2), pp. 111115.
    53. 53)
      • 14. Chen, X.: ‘Throughput modeling and measurement in an isotropic-scattering reverberation chamber’, IEEE Trans. Antennas Propag., 2014, 62, (4), pp. 21302139.
    54. 54)
      • 45. Lemoine, C., Amador, E., Besnier, P.: ‘Mode-stirring efficiency of reverberation chambers based on Rician K-factor’, Electron. Lett., 2011, 47, (20), pp. 11141115.
    55. 55)
      • 26. Krauthauser, H.G.: ‘Number of samples required to meet a field inhomogeneity limit with given confidence in reverberation chambers’, IEEE Trans. Electromagn. Compat., 2012, 54, (5), pp. 968975.
    56. 56)
      • 4. Micheli, D., Barazzetta, M., Carlini, C., et al: ‘Testing of the carrier aggregation mode for a live LTE base station in reverberation chamber’, IEEE Trans. Veh. Technol., 2017, 66, (4), pp. 30243033.
    57. 57)
      • 22. Arnaut, L.R.: ‘Measurement uncertainty in reverberation chambers – I. Sample statistics’, NPL, London, U.K., NPL Report TQE2, December2008, pp. 1136.
    58. 58)
      • 39. Serra, R., Canavero, F.: ‘Bivariate statistical approach for ‘good but – imperfect’ electromagnetic reverberation’, IEEE Trans. Electromagn. Compat., 2011, 53, (3), pp. 554561.
    59. 59)
      • 31. Becker, M.G., Frey, M., Streett, S., et al: ‘Correlation-based uncertainty in loaded reverberation chambers’, IEEE Trans. Antennas Propag., 2018, 66, (10), pp. 54535463.
    60. 60)
      • 48. Hill, D.A., Ladbury, J.M.: ‘Spatial-correlation functions of fields and energy density in a reverberation chamber’, IEEE Trans. Electromagn. Compat., 2002, 44, (1), pp. 209217.
    61. 61)
      • 8. Amador, E., Krauthauser, H.G., Besnier, P.: ‘A binomial model for radiated immunity measurements’, IEEE Trans. Electromagn. Compat., 2013, 55, (4), pp. 683691.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.6054
Loading

Related content

content/journals/10.1049/iet-map.2018.6054
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address