Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

On end-fire super directivity of arrays of two elementary dipoles and isotropic radiators

On end-fire super directivity of arrays of two elementary dipoles and isotropic radiators

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The concept of source currents of a radiating source can be employed to express its directivity in some particular cases analytically. For an antenna array, this concept can be extended to the concept of a generalised directivity based on self- and mutual radiation intensities, self- and mutual radiated powers and excitation currents of array elements. These approaches were applied to examples of the array of two elementary dipoles and the array of two isotropic radiators. Particularly, the evaluation of the directivity of the end-fire arrays, which are of special attention due to superdirective properties, was treated. Novel closed-form expressions for the directivity of these arrays with out-of-phase excitation were derived. It was observed that the end-fire directivity can be further enhanced by optimising the excitation currents of the arrays. Their optimal phase difference and corresponding increased directivity were also found analytically. The results were validated by a full-wave simulator.

References

    1. 1)
      • 15. Safaai-Jazi, A.: ‘Directivity of Chebyshev arrays with arbitrary element spacing’, Electron. Lett., 1995, 31, (10), pp. 772774.
    2. 2)
      • 31. Shamonina, E., Kalinin, V.A., Ringhofer, K.H., et al: ‘Short dipole as a receiver: effective aperture shapes and streamlines of the Poynting vector’, IEE Proc. – Microw., Antennas Propag., 2002, 149, (3), pp. 153159.
    3. 3)
      • 24. Orfanidis, S.J.: ‘Electromagnetic waves & antennas’, Available at: http://eceweb1.rutgers.edu/˜orfanidi/ewa, 2019.
    4. 4)
      • 17. Rudge, A.W.: ‘The handbook of antenna design’ (Institution of Engineering and Technology, Stevenage, UK, 1983), vol. 2.
    5. 5)
      • 22. Hazdra, P., Lonsky, T., Kracek, J.: ‘Superdirective closely-spaced arrays’. 13th European Conf. on Antennas and Propagation (EuCAP) Proc., Krakow, Poland, 2019, pp. 13.
    6. 6)
      • 29. Hazdra, P., Capek, M., Eichler, J., et al: ‘The radiation Q-factor of a horizontal λ/2 dipole above ground plane’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 10731075.
    7. 7)
      • 23. Computer Simulation Technology: ‘Microwave Studio’, Available at: https://www.cst.com, 2018.
    8. 8)
      • 13. Margetis, D., Fikioris, G., Myers, J.M., et al: ‘Highly directive current distributions: General theory’, Phys. Rev. E, 1998, 58, (2), pp. 25312547.
    9. 9)
      • 19. Shamonina, E., Solymar, L.: ‘Maximum directivity of arbitrary dipole arrays’, IET Microw. Antennas Propag., 2015, 9, (2), pp. 101107.
    10. 10)
      • 12. Angell, T.S., Kirsch, A., Kleinman, R.E.: ‘Antenna control and optimization’, Proc. IEEE, 1991, 79, (10), pp. 15591568.
    11. 11)
      • 24. Orfanidis, S.J.: ‘Electromagnetic waves & antennas’, Available at: www.ece.rutgers.edu/˜orfanidi/ewa, 2016.
    12. 12)
      • 21. Rogers, P.: ‘Application of the minimum scattering antenna theory to mismatched antennas’, IEEE Trans. Antennas Propag., 1986, 34, (10), pp. 12231228.
    13. 13)
      • 18. Uzsoky, M., Solymar, L.: ‘Theory of super-directive linear arrays’, Acta Phys. Acad. Sci. Hung., 1956, 6, (2), pp. 185205.
    14. 14)
      • 17. Rudge, A.W.: ‘The handbook of antenna Design’ (Institution of Engineering and Technology, Stevenage, UK, 1983), vol. 2.
    15. 15)
      • 15. Safaai-Jazi, A.: ‘Directivity of chebyshev arrays with arbitrary element spacing’, Electron. Lett., 1995, 31, (10), pp. 772774.
    16. 16)
      • 16. Costa, B.F., Abrao, T.: ‘Closed-form directivity expression for arbitrary volumetric antenna arrays’, IEEE Trans. Antennas Propag., 2018, 66, (12), pp. 74437448.
    17. 17)
      • 2. Bloch, A., Medhurst, R.G., Pool, S.D.: ‘A new approach to the design of superdirective aerial arrays’, Proc. IEE - Part III: Radio Commun. Eng., 1953, 100, (67), pp. 303314.
    18. 18)
      • 22. Hazdra, P., Lonsky, T., Kracek, J.: ‘Superdirective closely-spaced arrays’. Proc. of the 13th European Conf. on Antennas and Propagation (EuCAP), Krakow, Poland, 2019, pp. 13.
    19. 19)
      • 4. Yaghjian, A.D., O'Donnell, T.H., Altshuler, E.E., et al: ‘Electrically small supergain end-fire arrays’, Radio Sci., 2008, 43, (3), pp. 113.
    20. 20)
      • 10. Kraus, J.D.: ‘Antennas’ (McGraw-Hill, New York, NY, USA, 1988).
    21. 21)
      • 6. Altshuler, E.E., O'Donnell, T.H., Yaghjian, A.D., et al: ‘A monopole superdirective array’, IEEE Trans. Antennas Propag., 2005, 53, (8), pp. 26532661.
    22. 22)
      • 3. Uzkov, A.I.: ‘An approach to the problem of optimum directive antennae design’, Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS, 1946, 53, (1), pp. 3538.
    23. 23)
      • 11. Gustafsson, M., Cismasu, M., Jonsson, B.L.G.: ‘Physical bounds and optimal currents on antennas’, IEEE Trans. Antennas Propag., 2012, 60, (6), pp. 26722681.
    24. 24)
      • 7. Noguchi, A., Arai, H.: ‘3-element super-directive endfire array with decoupling network’. 2014 Int. Symp. on Antennas and Propagation Conf. Proc., Kaohsiung, Taiwan, 2014, pp. 455456.
    25. 25)
      • 29. Hazdra, P., Capek, M., Eichler, J., et al: ‘The radiation Q-factor of a horizontal λ/2 dipole above ground plane’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 10731075.
    26. 26)
      • 27. Lonsky, T., Hazdra, P., Kracek, J.: ‘Characteristic modes of dipole arrays’, IEEE Antennas Wirel. Propag. Lett., 2018, 17, (6), pp. 9981001.
    27. 27)
      • 30. Harrington, R.F.: ‘Field computation by moment methods’ (Wiley – IEEE Press, Hoboken, NJ, USA, 1993).
    28. 28)
      • 31. Shamonina, E., Kalinin, V.A., Ringhofer, K.H., et al: ‘Short dipole as a receiver: effective aperture shapes and streamlines of the poynting vector’, IEE Proc. – Microw., Antennas Propag., 2002, 149, (3), pp. 153159.
    29. 29)
      • 25. Jordan, E.C., Balmain, K.G.: ‘Electromagnetic waves and radiating systems’ (Pearson Education, London, UK, 2015, 2nd edn.).
    30. 30)
      • 14. Kedar, A., Ligthart, L.P.: ‘Wide scanning characteristics of sparse phased array antennas using an analytical expression for directivity’, IEEE Trans. Antennas Propag., 2019, 67, (2), pp. 905914.
    31. 31)
      • 8. Best, S.R., Altshuler, E.E., Yaghjian, A.D., et al: ‘An impedance-matched 2-element superdirective array’, IEEE Antennas Wirel. Propag. Lett., 2008, 7, pp. 302305.
    32. 32)
      • 26. Lo, Y.T., Lee, S.W., Lee, Q.H.: ‘Optimization of directivity and signal-to-noise ratio of an arbitrary antenna array’, Proc. IEEE, 1966, 54, (8), pp. 10331045.
    33. 33)
      • 32. Diao, J., Warnick, K.F.: ‘Poynting streamlines, effective area shape, and the design of superdirective antennas’, IEEE Trans. Antennas Propag., 2017, 65, (2), pp. 861866.
    34. 34)
      • 9. Clemente, A., Pigeon, M., Rudant, L., et al: ‘Design of a super directive four-element compact antenna array using spherical wave expansion’, IEEE Trans. Antennas Propag., 2015, 63, (11), pp. 47154722.
    35. 35)
      • 13. Margetis, D., Fikioris, G., Myers, J.M., et al: ‘Highly directive current distributions: general theory’, Phys. Rev. E, 1998, 58, (2), pp. 25312547.
    36. 36)
      • 20. Wasylkiwskyj, W., Kahn, W.K.: ‘Theory of mutual coupling among minimum-scattering antennas’, IEEE Trans. Antennas Propag., 1970, 18, (2), pp. 204216.
    37. 37)
      • 5. Haskou, A., Sharaiha, A., Collardey, S.: ‘Design of small parasitic loaded superdirective end-fire antenna arrays’, IEEE Trans. Antennas Propag., 2015, 63, (12), pp. 54565464.
    38. 38)
      • 28. Polivka, M., Vrba, D.: ‘Input resistance of electrically short not-too-closely spaced multielement monopoles with uniform current distribution’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 15761579.
    39. 39)
      • 23. Computer Simulation Technology.: ‘Microwave studio’, Available at: http://www.cst.com, 2018.
    40. 40)
      • 1. Hansen, W.W., Woodyard, J.R.: ‘A new principle in directional antenna design’, Proc. Inst. Radio Eng., 1938, 26, (3), pp. 333345.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.6013
Loading

Related content

content/journals/10.1049/iet-map.2018.6013
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address