Your browser does not support JavaScript!

access icon free Transient analysis of finite multi-conductor transmission line metamaterials (MTL-MMs) based on discrete green's function (DGF) and macro-modelling techniques

A new systematic macro-modelling technique for transient analysis of finite multi-conductor transmission line metamaterials (MTL-MMs) based on a Dyadic discrete Green's function (DGF) approach is proposed. Governing discrete voltage-based equations for one- and two-dimensional (1-D and 2-D) MTL-MMs are derived using a rigorous MTL analysis. Applying the idea of the Dyadic DGF solution to these equations, the impedance matrix representation of a finite open-ended MTL-MM is represented in a rational form, where the corresponding poles and residues can be identified exactly. The resulting pole/residue macro-model is converted into a state space model which is compatible to SPICE circuit simulator. The proposed macro-modelling technique significantly reduces the CPU time for transient analysis of 2-D electromagnetic band gap (EBG) structures embedded in large multi-layer printed circuit boards or volumetric NRI slabs with interaction with free space waves which can be modelled as an MTL-MM system. The usefulness of the proposed macro-model is illustrated by three sample MTL-MMs including 1-D shunt node negative refractive index ( NRI ) slab and 2-D two- and three-layered shielded EBG structures. The obtained results from the proposed macro-modelling technique are presented and compared with those obtained using a full-wave simulator, confirming the validity of the proposed model.


    1. 1)
      • 13. Stickel, M., Elek, F., Zhu, J., et al: ‘Volumetric negative- refractive-index metamaterials based upon the shunt-node transmission-line configuration’, J. Appl. Phys., 2007, 102, pp. 094903094910.
    2. 2)
      • 11. Antonini, G.: ‘A closed-form rational model of right/left-handed coupled ladder networks’, Appl. Comput. Electromagn. Soc. J., 2009, 24, (1), pp. 4555.
    3. 3)
      • 8. Afrooz, K., Abdipour, A., Martín, F.: ‘Time domain analysis of one-dimensional linear and non-linear composite right/left-handed transmission lines using finite-difference time-domain method’, IET Microw. Antennas Propag., 2012, 6, (3), pp. 312325.
    4. 4)
      • 10. Bongard, F., Perruisseau-Carrier, J., Mosig, J.R.: ‘Enhanced periodic structure analysis based on a multiconductor transmission line model and application to metamaterials’, IEEE Trans. Adv. Packag., 2009, 57, (11), pp. 27152726.
    5. 5)
      • 12. Iyer, A.K., Eleftheriades, G.V.: ‘A volumetric layered transmission-line metamaterial exhibiting a negative refractive index’, J. Opt. Soc. Am. B, 2006, 23, pp. 553570.
    6. 6)
      • 7. Naqui, J., Duran-Sindreu, M., Martín, F.: ‘Modeling split ring resonator (SRR) and complementary split ring resonator (CSRR) loaded transmission lines exhibiting cross polarization effects’, IEEE Antennas Wirel. Propag. Lett., 2013, 12, pp. 178181.
    7. 7)
      • 18. Weisstein, E.W.: ‘Quartic equation’ in ‘Mathworld – a Wolfram web resource’. Available at
    8. 8)
      • 14. Zhu, J., Eleftheriades, G.V.: ‘Fully printed volumetric negative-refractive-index transmission-line slabs using a stacked shunt-node topology’. Microwave Symp. Digest, IEEE MTT-S Int., Atlanta, GA, USA, June 2008, pp. 173176.
    9. 9)
      • 2. Nguyen, H.V., Caloz, C.: ‘Generalized coupled-mode approach of metamaterial coupled-line couplers: coupling theory, phenomenological explanation, and experimental demonstration’, IEEE Trans. Microw. Theory Tech., 2007, 55, (5), pp. 10291039.
    10. 10)
      • 9. Afrooz, K., Abdipour, A., Martín, F.: ‘Finite difference time domain analysis of extended composite right/left-handed transmission line equations’, Int. J. RF Microw. Comput.-Aided Eng., 2013, 24, (1), pp. 6876.
    11. 11)
      • 20. Achar, R., Nakhla, M.: ‘Simulation of high-speed interconnects’, Proc. IEEE, 2001, 89, (5), pp. 693728.
    12. 12)
      • 3. Abhari, R., Eleftheriades, G.V.: ‘Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits’, IEEE Trans. Microw. Theory Tech., 2003, 51, pp. 16291639.
    13. 13)
      • 5. Naqui, J., Duran-Sindreu, M., Fernandez-Prieto, A., et al: ‘Multimode propagation and complex waves in CSRR-based transmission-line metamaterials’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 10241027.
    14. 14)
      • 15. Rudolph, S.M., Grbic, A.: ‘The design of broadband, volumetric NRI media using multiconductor transmission-line analysis’, IEEE Trans. Antennas Propag., 2010, 58, (4), pp. 11441154.
    15. 15)
      • 16. Faria, J.A.B.: ‘Multiconductor transmission-line structures: modal analysis techniques’ (Wiley Press, New York, 1993).
    16. 16)
      • 6. Islam, R., Zedler, M., Eleftheriades, G.V.: ‘Modal analysis and wave propagation in finite 2D transmission-line metamaterials’, IEEE Trans. Antennas Propag., 2011, 59, (5), pp. 15621570.
    17. 17)
      • 17. Cojocaru, S.: ‘Some exact expressions for the Green's function of a finite chainMoldavian J. Phys., 2003, 2, p.114.
    18. 18)
      • 19. Saraswat, D., Achar, R., Nakhla, M.: ‘Enforcing passivity for rational function based macromodels of tabulated data’. Proc. 12th IEEE Topical Meeting on Electrical Performance of Electronic Packaging, Princeton, NJ, October 2003, pp. 295298.
    19. 19)
      • 4. Payandehjoo, K., Tavallaee, A., Abhari, R.: ‘Analysis of shielded electromagnetic bandgap structures using multiconductor transmission-line theory’, IEEE Trans. Adv. Packag., 2010, 33, (1), pp. 236245.
    20. 20)
      • 1. Islam, R., Elek, F., Eleftheriades, G.V.: ‘Coupled-line metamaterial coupler having co-directional phase but contra-directional power flow’, Electron. Lett., 2004, 40, pp. 315317.

Related content

This is a required field
Please enter a valid email address