access icon free Time-dependent radiation pattern analysis of cable-net reflector antennas

Due to the time-dependent load-elongation characteristic of cables, the cable-net reflector antenna shows a creep and recovery behaviour which has limited the development of the cable-net reflector antenna with high frequency and high stability. Therefore, this study is dedicated to investigating a time-dependent radiation pattern analysis method for cable-net reflector antennas. Based on the physical optics (PO) method, formulas are firstly established for the time-dependent far-field radiated pattern analysis. To avoid the repetitive computation of PO radiation integrals and improve the calculation efficiency, the exponential error terms are expanded by the Taylor series at the mean values of phase errors in each small region and the time factor is separated from the integral for some special case. Eventually, an axis-symmetric reflector antenna is taken as a numerical example to verify the practicability, validity and robustness of the proposed method.

Inspec keywords: antenna radiation patterns; reflector antennas; physical optics; integral equations

Other keywords: cable-net reflector antenna; Taylor series; time-dependent load-elongation characteristic; axis-symmetric reflector antenna; time-dependent far-field radiated pattern; PO radiation integrals; physical optics

Subjects: Single antennas; Integral equations (numerical analysis)

References

    1. 1)
      • 14. Ruze, J.: ‘The effect of aperture errors on the antenna radiation pattern’, Il Nuovo Cimento, 1952, 9, (3), pp. 364380.
    2. 2)
      • 15. Ruze, J.: ‘Antenna tolerance theory-a review’, Proc. IEEE, 1966, 54, (4), pp. 633640.
    3. 3)
      • 5. Tang, Y.Q., Li, T.J., Ma, X.F.: ‘Pillow distortion analysis for a space mesh reflector antenna’, AIAA J., 2017, 55, (9), pp. 32063213.
    4. 4)
      • 6. Abad, M.S.A., Shooshtari, A., Esmaeili, V., et al: ‘Nonlinear analysis of cable structures under general loadings’, Finite Elem. Anal. Des., 2013, 73, pp. 1119.
    5. 5)
      • 4. Li, T.J.: ‘Deployment analysis and control of deployable space antenna’, Aerosp. Sci. Technol., 2012, 18, (1), pp. 4247.
    6. 6)
      • 16. Rahmat-Samil, Y., Galindo-Israel, V.: ‘Shaped reflector antenna analysis using the Jacobi–Bessel series’, IEEE Trans. Antennas Propag., 1980, 28, (4), pp. 425435.
    7. 7)
      • 19. Lian, P., Duan, B., Wang, W., et al: ‘A pattern approximation method for distorted reflector antennas using piecewise linear fitting of the exponential error term’, IEEE Trans. Antennas Propag., 2015, 63, (10), pp. 23122316.
    8. 8)
      • 21. Bird, T.S.: ‘Arrays of aperture antennas’, in ‘Fundamentals of aperture antennas & arrays’ (Wiley, Hoboken, NJ, USA, 2016), pp. 219305.
    9. 9)
      • 17. Smith, W.T., Bastian, R.J.: ‘An approximation of the radiation integral for distorted reflector antenna using surface-error decomposition’, IEEE Trans. Antennas Propag., 1997, 45, (1), pp. 510.
    10. 10)
      • 13. Tang, Y.Q., Li, T.J., Ma, X.F.: ‘Form finding of cable net reflector antennas considering creep and recovery behaviors’, J. Spacecr. Rockets, 2016, 53, (4), pp. 610618.
    11. 11)
      • 8. Kmet, S., Mojdis, M.: ‘Time-dependent analysis of cable nets using a modified nonlinear force-density method and creep theory’, Comput. Struct., 2015, 148, pp. 4562.
    12. 12)
      • 20. Imbriale, W.A.: ‘Reflector antennas’, in Balanis, C.A. (Eds.): ‘Modern antenna handbook’ (Wiley, Hoboken, NJ, USA, 2008), pp. 201262.
    13. 13)
      • 10. Linkwitz, K., Schek, H.J.: ‘Einige bemerkungen zur berechnung von vorgespannten seilnetzkonstruktionen’, Ing.-Arch., 1971, 40, (3), pp. 145158.
    14. 14)
      • 3. Semler, D., Tulintseff, A., Sorrell, R., et al: ‘2010 design, integration and deployment of the TerreStar 18-meter reflector’. 28th AIAA Int. Communications Satellite Systems Conf. AIAA, California, 2010, pp. 20108855.
    15. 15)
      • 12. Tang, Y.Q., Li, T.J., Ma, X.F.: ‘Creep and recovery behavior analysis of space mesh structures’, Acta Astronaut., 2016, 128, (November–December), pp. 455463.
    16. 16)
      • 11. Zhang, J.Y., Ohsaki, M.: ‘Adaptive force density method for form-finding problem of tensegrity structures’, Int. J. Solids Struct., 2006, 43, pp. 56585673.
    17. 17)
      • 9. Day, A.S.: ‘An introduction to dynamic relaxation’, Engineer, 1965, 219, pp. 218221.
    18. 18)
      • 1. Meguro, A., Shintate, K., Usui, M., et al: ‘In-orbit deployment characteristics of large deployable antenna reflector onboard engineering test satellite VIII’, Acta Astronaut., 2009, 65, (9–10), pp. 13061316.
    19. 19)
      • 2. Thomson, M.W.: ‘The AstroMesh deployable reflector’. Proc. of the 1999 IEEE Int. Antennas and Propagation Symp. and USNC/URSI National Radio Science Meeting, Orlando, FL, USA, 1999, pp. 15161519.
    20. 20)
      • 7. Kmet, S., Mojdis, M.: ‘Time-dependent analysis of cable domes using a modified dynamic relaxation method and creep theory’, Comput. Struct., 2013, 125, pp. 1122.
    21. 21)
      • 18. Zhang, S, Duan, B., Yang, G., et al: ‘An approximation of pattern analysis for distorted reflector antennas using structural-electromagnetic coupling model’, IEEE Trans. Antennas Propag., 2013, 61, (9), pp. 48444847.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5918
Loading

Related content

content/journals/10.1049/iet-map.2018.5918
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading