access icon free Broadband continuous mode power amplifier with on-board harmonic injection

This study presents the design of a broadband continuous mode power amplifier (PA) with an active harmonic injection (HI). Since the injected harmonic signal is generated on-board using a frequency doubler, this design has a single radio frequency input. The generated second harmonic is injected at the drain terminal of a gallium nitride high-electron-mobility transistor used in designing continuous class B/J PA. A design space in terms of amplitude and phase of the injected harmonic signal is analysed to obtain the loads that operate the PA in the continuous class B/J mode at the current generator reference plane. The proposed design strategy is verified by designing a prototype with a frequency doubler and a PA using 10 and 15 W gallium nitride high-electron-mobility transistors, respectively. The measured drain efficiency of 60.04–70.96% and output power of 40.17–42.6 dBm is obtained from 1 to 1.9 GHz. This corresponds to a broadband operation of 900 MHz with 62% fractional bandwidth. The designed HI–PA is also tested with a 20 MHz long-term evolution signal whose corresponding adjacent channel power ratio is better than −47.76 dBc in the overall band after applying digital predistortion.

Inspec keywords: wide band gap semiconductors; UHF power amplifiers; high electron mobility transistors; wideband amplifiers; III-V semiconductors; frequency multipliers; gallium compounds

Other keywords: power 10.0 W; frequency 20.0 MHz; frequency doubler; adjacent channel power ratio; on-board harmonic injection; long-term evolution; GaN; current generator reference plane; frequency 900.0 MHz; gallium nitride high-electron-mobility transistor; power 15.0 W; injected harmonic signal; efficiency 60.04 percent to 70.96 percent; frequency 1.0 GHz to 1.9 GHz; active harmonic injection; continuous class B/J mode; broadband continuous mode power amplifier; single radio frequency input; digital predistortion

Subjects: Amplifiers; Microwave integrated circuits; Convertors; Other field effect devices

References

    1. 1)
      • 14. Alizadeh, A., Yaghoobi, M., Medi, A.: ‘Class-J2 power amplifiers’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2017, 64, (8), pp. 19892002.
    2. 2)
      • 2. Negra, R., Sadeve, A., Bensmida, S., et al: ‘Concurrent dual-band class-F load coupling network for applications at 1.7 and 2.14 GHz’, IEEE Trans. Circuits Syst. II, Express Briefs, 2008, 55, (3), pp. 259263.
    3. 3)
      • 7. Sharma, T., Darraji, R., Ghannouchi, F.: ‘A methodology for implementation of high-efficiency broadband power amplifiers with second-harmonic manipulation’, IEEE Trans. Circuits Syst. II, Express Briefs, 2016, 63, (1), pp. 5458.
    4. 4)
      • 12. AlMuhaisen, A., Lees, J., Cripps, S.C., et al: ‘Wide band high-efficiency power amplifier design’. Proc. European Microwave Integrated Circuits Conf., October 2011, pp. 184187.
    5. 5)
      • 11. Dani, A., Roberg, M., Popovic, Z.: ‘PA efficiency and linearity enhancement using external harmonic injection’, IEEE Trans. Microw. Theory Tech., 2012, 60, (12), pp. 40974106.
    6. 6)
      • 3. Aggrawal, E., Rawat, K., Roblin, P.: ‘Investigating continuous class-F power amplifier using nonlinear embedding model’, IEEE Microw. Wirel. Compon. Lett., 2017, 27, (6), pp. 593595.
    7. 7)
      • 17. Gowrish, B., Rawat, K., Basu, A., et al: ‘Broad-band matching network using band-pass filter with device parasitic absorption’. Proc. 82nd ARFTG Microwave Measurement Conf., November 2013, pp. 14.
    8. 8)
      • 10. AlMuhaisen, A., Wright, P., Lees, J., et al: ‘Novel wide band high-efficiency active harmonic injection power amplifier concept’. Proc. Int. Microwave Symp. (MTT), May 2010, pp. 664667.
    9. 9)
      • 1. Raab, F.H.: ‘Class-E, class-C, and class-F power amplifiers based upon a finite number of harmonics’, IEEE Trans. Microw. Theory Tech., 2001, 49, (8), pp. 14621468.
    10. 10)
      • 15. Pednekar, P.H., Berry, E., Barton, T.W.: ‘‘RF-input load modulated balanced amplifier with octave bandwidth’, IEEE Trans. Microw. Theory Tech., 2017, 65, (12), pp. 51815191.
    11. 11)
      • 6. Mimis, K., Morris, K.A., Bensmida, S., et al: ‘Multichannel and wideband power amplifier design methodology for 4 G communication systems based on hybrid class-J operation’, IEEE Trans. Microw. Theory Tech., 2012, 60, (8), pp. 25622570.
    12. 12)
      • 8. Zheng, S.Y., Liu, Z.W., Zhang, X.Y., et al: ‘Design of ultrawideband high-efficiency extended continuous class-F power amplifier’, IEEE Trans. Ind. Electron., 2018, 65, (6), pp. 46614669.
    13. 13)
      • 16. Wong, C., Yuk, K., Branner, G.R., et al: ‘High power, wideband frequency doubler design using AlGaN/GaN HEMTs and filtering’. Proc. European Microwave Conf. (EuMC), October 2011, pp. 587590.
    14. 14)
      • 13. Seo, M., Lee, H., Gu, J., et al: ‘High-efficiency power amplifier using an active second-harmonic injection technique under optimized third-harmonic termination’, IEEE Trans. Circuits Syst. II, Express Briefs, 2014, 61, (8), pp. 549553.
    15. 15)
      • 5. Wright, P., Lees, J., Benedikt, J., et al: ‘A methodology for realizing high efficiency class-J in a linear and broadband PA’, IEEE Trans. Microw. Theory Tech., 2009, 57, (12), pp. 31963204.
    16. 16)
      • 18. Rawat, M., Rawat, K., Ghannouchi, F.M.: ‘Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks’, IEEE Trans. Microw. Theory Tech., 2010, 58, (1), pp. 95104.
    17. 17)
      • 9. Saxena, S., Rawat, K., Roblin, P.: ‘Continuous class-B/J power amplifier using a nonlinear embedding technique’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 64, (7), pp. 837841.
    18. 18)
      • 4. Cripps, S.C., Tasker, P.J., Clarke, A.L., et al: ‘On the continuity of high efficiency modes in linear RF power amplifiers’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (10), pp. 665667.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5885
Loading

Related content

content/journals/10.1049/iet-map.2018.5885
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading