access icon free Harmonic-tuned continuum mode active load modulation output combiner for the design of broadband asymmetric Doherty power amplifiers

The conventional Doherty output combiner limits the bandwidth of operation in the asymmetric Doherty power amplifiers (DPAs). In this study, an output combiner that is designed using a harmonic-tuned continuum mode active load modulation technique is proposed with the main target of extending the bandwidth of operation in the asymmetric DPAs. Through this methodology, design equations are derived and multiple harmonic impedance solutions are provided. This offers greater freedom for designing the output combiner of the asymmetric DPA which consists of the impedance inverting network and the impedance transforming network. Moreover, enhancements in the efficiencies at back-off and saturation power levels are made possible. The efficacy of the design strategy is demonstrated by the realised broadband asymmetric DPA prototype working within the band of 1.4–2.45 GHz. The experimental results have shown 54.55% bandwidth of operation, accounting for about 0.95–12.55% increment in bandwidth as compared with some recently published DPAs in the literature. Substantially, drain efficiencies within 35.5–52% at 6 dB output power back-off level and 47.5–64.2% at peaking power level are also recorded from the experiments. The maximum output power and gain are recorded at 43.52 dBm and 13.03 dB, respectively.

Inspec keywords: UHF power amplifiers; impedance convertors; power combiners

Other keywords: gain 13.03 dB; frequency 1.4 GHz to 2.45 GHz; broadband asymmetric Doherty power amplifiers; impedance transforming network; saturation power levels; active load modulation output combiner; harmonic-tuned continuum mode; noise figure 13.03 dB; broadband asymmetric DPA prototype; asymmetric Doherty power amplifiers; impedance inverting network; multiple harmonic impedance solutions; conventional Doherty output combiner; efficiency 35.5 percent to 52 percent

Subjects: Active filters and other active networks; Amplifiers; Microwave integrated circuits; Waveguide and microwave transmission line components

References

    1. 1)
      • 30. Kim, J., Fehri, B., Boumaiza, S., et al: ‘Power efficiency and linearity enhancement using optimized asymmetrical Doherty power amplifiers’, IEEE Trans. Microw. Theory Tech., 2011, 59, (2), pp. 425434.
    2. 2)
      • 23. Barthwal, A., Rawat, K., Koul, S., et al: ‘Wideband tri-stage Doherty power amplifier with asymmetric current ratios’. Proc. IEEE MTT-S Int. Microwave and RF Conf. (IMaRC), New Delhi, India, December 2016, pp. 14.
    3. 3)
      • 7. Zhou, X.Y., Zheng, S.Y., Chan, W.S., et al: ‘Broadband efficiency-enhanced mutually coupled harmonic postmatching doherty power amplifier’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2017, 64, (7), pp. 17581771.
    4. 4)
      • 10. Chen, S., Wang, G., Cheng, Z., et al: ‘A bandwidth enhanced Doherty power amplifier with a compact output combiner’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (6), pp. 434436.
    5. 5)
      • 29. Jang, H., Roblin, P., Quindroit, C., et al: ‘Asymmetric Doherty power amplifier designed using model-based nonlinear embedding’, IEEE Trans. Microw. Theory Tech., 2014, 62, (12), pp. 34363451.
    6. 6)
      • 31. Cripps, S.C., Tasker, P.J., Clarke, A.L., et al: ‘On the continuity of high efficiency modes in linear RF power amplifiers’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (10), pp. 665667.
    7. 7)
      • 37. Shi, W., He, S., Zhu, X., et al: ‘Broadband continuous-mode Doherty power amplifiers with noninfinity peaking impedance’, IEEE Trans. Microw. Theory Tech., 2018, 66, (2), pp. 10341046.
    8. 8)
      • 38. Chen, X., Chen, W., Ghannouchi, F.M., et al: ‘A broadband Doherty power amplifier based on continuous-mode technology’, IEEE Trans. Microw. Theory Tech., 2016, 64, (12), pp. 45054517.
    9. 9)
      • 18. Xia, J., Yang, M., Guo, Y., et al: ‘A broadband high-efficiency Doherty power amplifier with integrated compensating reactance’, IEEE Trans. Microw. Theory Tech., 2016, 64, (7), pp. 20142024.
    10. 10)
      • 11. Khan, M.S., Zhang, H., Wang, X., et al: ‘A novel two-stage broadband Doherty power amplifier for wireless applications’, IEEE Microw. Wirel. Compon. Lett., 2018, 28, (1), pp. 4042.
    11. 11)
      • 27. Son, J., Kim, I., Moon, J., et al: ‘A highly efficient asymmetric Doherty power amplifier with a new output combining circuit’. Proc. IEEE Int. Conf. Microwaves, Communications, Antennas and Electronic Systems (COMCAS), Tel Aviv, Israel, November 2011, pp. 14.
    12. 12)
      • 3. Sun, Y., Zhu, X.: ‘Broadband continuous class-F−1 amplifier with modified harmonic-controlled network for advanced long term evolution application’, IEEE Trans. Microw. Theory Tech., 2015, 25, (4), pp. 250252.
    13. 13)
      • 6. Chen, J., He, S.: ‘Broadband high-efficiency power amplifiers design based on hybrid continuous modes utilizing the optimal impedances at package plane’. Proc. IEEE MTT-S Int. Microwave Symp. Digest, Phoenix, AZ, USA, May 2015, pp. 14.
    14. 14)
      • 20. Pang, J., He, S., Dai, Z., et al: ‘Design of a post-matching asymmetric Doherty power amplifier for broadband applications’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (1), pp. 5254.
    15. 15)
      • 21. Alt, A., Lees, J.: ‘Improving efficiency, linearity and linearisability of an asymmetric doherty power amplifier by modulating the peaking amplifier's supply voltage’. Proc. 47th European Microwave Conf. (EuMC), Nuremberg, Germany, October 2017, pp. 464467.
    16. 16)
      • 16. Giofrè, R., Piazzon, L., Colantonio, P., et al: ‘A closed-form design technique for ultra-wideband Doherty power amplifiers’, IEEE Trans. Microw. Theory Tech., 2014, 62, (12), pp. 34143424.
    17. 17)
      • 14. Pang, J., He, S., Huang, C., et al: ‘A post-matching Doherty power amplifier employing low-order impedance inverters for broadband applications’, IEEE Trans. Microw. Theory Tech., 2015, 63, (12), pp. 40614071.
    18. 18)
      • 24. Oh, H., Kang, H., Lee, H., et al: ‘Doherty power amplifier based on the fundamental current ratio for asymmetric cells’, IEEE Trans. Microw. Theory Tech., 2017, 65, (11), pp. 41904197.
    19. 19)
      • 32. Cripps, S.C.: ‘RF power amplifiers for wireless communications’ (Artech House Inc., Norwood, MA, 1974, 2nd edn. 2006).
    20. 20)
      • 1. Camarchia, V., Pirola, M., Quaglia, R., et al: ‘The Doherty power amplifier: review of recent solutions and trends’, IEEE Trans. Microw. Theory Tech., 2015, 63, (2), pp. 559571.
    21. 21)
      • 33. Wright, P., Lees, J., Benedikt, J., et al: ‘A methodology for realizing high efficiency class-J in a linear and broadband PA’, IEEE Trans. Microw. Theory Tech., 2009, 57, (12), pp. 31963204.
    22. 22)
      • 8. Giofrè, R., Colantonio, P., Giannini, F., et al: ‘New output combiner for Doherty amplifiers’, IEEE Microw. Wirel. Compon. Lett., 2013, 23, (1), pp. 3133.
    23. 23)
      • 36. Doherty, W.H.: ‘A new high efficiency power amplifier for modulated waves’. Proc. Inst. Radio Eng., 1936, 24, (9), pp. 11631182.
    24. 24)
      • 13. Golestaneh, H., Malekzadeh, F.A., Boumaiza, S.: ‘An extended-bandwidth three-way Doherty power amplifier’, IEEE Trans. Microw. Theory Tech., 2013, 61, (9), pp. 33183328.
    25. 25)
      • 39. Tasker, P.J, Benedikt, J., Zhu, A., et al: ‘Waveform inspired models and the harmonic balance emulator’, IEEE Microw. Mag., 2011, 12, (2), pp. 3854.
    26. 26)
      • 17. Nghiem, X.A., Guan, J., Hone, T., et al: ‘Broadband sequential power amplifier with Doherty-type active load modulation’, IEEE Trans. Microw. Theory Tech., 2015, 63, (7), pp. 28212832.
    27. 27)
      • 15. Bathich, K., Markos, A.Z., Boeck, G.: ‘Frequency response analysis and bandwidth extension of the Doherty amplifier’, IEEE Trans. Microw. Theory Tech., 2011, 59, (4), pp. 934944.
    28. 28)
      • 2. Camarchia, V., Ghione, G., Pirola, M., et al: ‘System level characterization and digital predistortion of GaN MMIC Doherty power amplifiers for microwave point-to-point radios’. Proc. 20th Int. Conf. Microwaves, Radar and Wireless Communications (MIKON), Gdańsk, Poland, June 2014, pp. 14.
    29. 29)
      • 35. Naah, G., He, S., Shi, W., et al: ‘Broadband class-J/F−1 continuum mode design utilizing harmonic efficiency selectivity circuit’, Prog. Electromagn. Res. (PIER) M., 2018, 71, pp. 169178.
    30. 30)
      • 28. Kwon, J., Seo, M., Lee, H., et al: ‘Broadband Doherty power amplifier based on asymmetric load matching networks’, IEEE Trans. Circuits Syst. II, Express Briefs, 2015, 62, (6), pp. 533537.
    31. 31)
      • 22. Kim, J.: ‘Highly efficient asymmetric class-F−1/F GaN Doherty amplifier’, IEEE Trans. Microw. Theory Tech., 2018, 66, (9), pp. 40704077.
    32. 32)
      • 19. Abadi, M.N.A., Golestaneh, H., Sarbishaei, H., et al: ‘An extended bandwidth Doherty power amplifier using a novel output combiner’. Proc. IEEE MTT-S Int. Microwave Symp. Digest, Tampa, FL, USA, June 2014, pp. 14.
    33. 33)
      • 34. Tuffy, N., Guan, L., Zhu, A., et al: ‘A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers’, IEEE Trans. Microw. Theory Tech., 2012, 60, (6), pp. 19521963.
    34. 34)
      • 25. Cai, Y., Yu, C., Li, S., et al: ‘Modified Doherty power amplifier based on asymmetrical load matching networks’. Proc. Eleventh Int. Symp. Antennas, Propagation and EM Theory (ISAPE), Guilin, China, October 2016, pp. 739742.
    35. 35)
      • 5. Huang, H., Zhang, B., Yu, C., et al: ‘Design of multioctave bandwidth power amplifier based on resistive second-harmonic impedance continuous class-F’, IEEE Microw. Wirel. Compon. Lett., 2017, 27, (9), pp. 830832.
    36. 36)
      • 12. Giofrè, R., Piazzon, L., Colantonio, P., et al: ‘A Doherty architecture with high feasibility and defined bandwidth behavior’, IEEE Trans. Microw. Theory Tech., 2013, 61, (9), pp. 33083317.
    37. 37)
      • 4. Sharma, T., Darraji, R., Ghannouchi, F.: ‘A methodology for implementation of high-efficiency broadband power amplifiers with second-harmonic manipulation’, IEEE Trans. Circuits Syst. II, Express Briefs, 2016, 63, (1), pp. 5458.
    38. 38)
      • 26. Yu, Q., Yu, C., Tang, B., et al: ‘A new modified broadband asymmetric Doherty power amplifier’. Proc. IEEE Int. Conf. Computational Electromagnetics (ICCEM), Guangzhou, China, February 2016, pp. 310312.
    39. 39)
      • 9. Chen, X., Chen, W., Zhang, Q., et al: ‘A 200 watt broadband continuous-mode doherty power amplifier for base-station applications’. Proc. IEEE MTT-S Int. Microwave Symp. Digest, June 2017, pp. 11101113.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5841
Loading

Related content

content/journals/10.1049/iet-map.2018.5841
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading