Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Wideband two-port with programmable scattering parameters

A two-port network featuring programmable reflection and transmission coefficients is proposed. The network exhibits a simple structure and can operate over a wide frequency range. A detailed description of the presented system is given, including the theoretical analysis and derivation of design equations. To assess the performance of the manufactured system, the tuning range of reflection and transmission coefficients was measured in the frequency range from 0.5 to 2.0 GHz. The obtained results show good agreement with the theoretical results over the entire two-octave operational bandwidth. Moreover, the potential application of the developed two-port for the generation of various reflection coefficients in calibration of a multiport reflectometer is demonstrated.

References

    1. 1)
      • 14. Curutchet, A., Ghiotto, A., Potéreau, M.: ‘Early demonstration of a high VSWR microwave coaxial programmable impedance tuner with coaxial slugs’. 2015 European Microwave Conf. (EuMC), Paris, France, 2015, pp. 642645.
    2. 2)
      • 15. Lee, G., Jung, J., Song, J.: ‘A SiGeBiCMOS power amplifier using a lumped element-based impedance tuner’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (1), pp. 5860.
    3. 3)
      • 2. Sánchez-Pérez, C., de Mingo, J., Carro, P.L., et al: ‘Design and applications of a 300–800 MHz tunable matching network’, IEEE J. Emerg. Sel. Top. Circuits Syst., 2013, 3, (4), pp. 531540.
    4. 4)
      • 12. Hoffmann, K., Skvor, Z.: ‘A novel vector network analyzer’, IEEE Trans. Microw. Theory Tech., 1998, 46, (12), pp. 25202523.
    5. 5)
      • 11. Kim, K., Kim, N., Hwang, S.H., et al: ‘A miniaturized broadband multi-state reflectometer integrated on a silicon MEMS probe for complex permittivity measurement of biological material’, IEEE Trans. Microw. Theory Tech., 2013, 61, (5), pp. 22052214.
    6. 6)
      • 18. Lu, Y., Katehi, L.P.B., Peroulis, D.: ‘High-power MEMS varactors and impedance tuners for millimeter-wave applications’, IEEE Trans. Microw. Theory Tech., 2005, 53, (11), pp. 36723678.
    7. 7)
      • 20. Bae, Y., Kim, U., Kim, J.: ‘A programmable impedance tuner with finite SWRs for load-pull measurement of handset power amplifiers’, IEEE Microw. Wirel. Compon. Lett., 2015, 25, (4), pp. 268270.
    8. 8)
      • 21. Jeong, S., Jeong, J., Jeong, Y.: ‘A design of impedance tuner with programmable characteristic for RF amplifiers’, IEEE Microw. Wirel. Compon. Lett., 2017, 27, (5), pp. 473475.
    9. 9)
      • 7. Pienkowski, D., Wiatr, W.: ‘Broadband electronic impedance tuner’. 14th Int. Conf. on Microwaves, Radar and Wireless Communications (MIKON), Gdansk, Poland, 2002, pp. 310313.
    10. 10)
      • 16. Zhao, Y., Hemour, S., Chen, H., et al: ‘Power-handling capacity and nonlinearity analysis for distributed electronic impedance synthesizer’, IEEE Trans. Circuits Syst. I., 2018, 65, (4), pp. 13401348.
    11. 11)
      • 10. Ghannouchi, F.M., Bosisio, R.G.: ‘A six-port reflectometer with a variable test port impedance suitable for nonlinear microwave device characterization’. IEEE Instrumentation and Measurement Technology Conf., Atlanta, USA, 1991, pp. 180182.
    12. 12)
      • 1. Whatley, R.B., Zhou, Z., Melde, K.L.: ‘Reconfigurable RF impedance tuner for match control in broadband wireless devices’, IEEE Trans. Antenna. Propag., 2006, 54, (2), pp. 470478.
    13. 13)
      • 6. Essing, J., Malekzadeh, F.A., van Roermund, A., et al: ‘Hybrid multi-harmonic load- and source-pull system’. 80th ARFTG Microwave Measurement Conf., San Diego, USA, 2012, pp. 14.
    14. 14)
      • 13. Zavodny, V., Hoffmann, K., Skvor, Z.: ‘Seven state PTP for vector network analyzer’, Radioengineering, 2005, 14, (4), pp. 8790.
    15. 15)
      • 19. Gilasgar, M., Barlabé, A., Pradell, L.: ‘A 2.4 GHz CMOS class-F power amplifier with reconfigurable load-impedance matching’, IEEE Trans. Circuits Syst. I., 2019, 66, (1), pp. 3142.
    16. 16)
      • 8. Tagro, Y., Gloria, D., Boret, S., et al: ‘In-situ silicon integrated tuner for automated on-wafer MMW noise parameters extraction using multi-impedance method for transistor characterization’. 2009 IEEE Int. Conf. on Microelectronic Test Structures, Oxnard, USA, 2009, pp. 184188.
    17. 17)
      • 17. Porranzl, M., Wagner, C., Jaeger, H., et al: ‘A digital 70–140-GHz impedance tuner in 130-nm CMOS technology’. 2015 European Microwave Conf. (EuMC), Paris, France, 2015, pp. 11841187.
    18. 18)
      • 22. Staszek, K., Gruszczynski, S., Wincza, K.: ‘Ultra-wideband dual-line multiprobe reflectometer’, IEEE Trans. Microw. Theory Tech., 2017, 65, (4), pp. 13241333.
    19. 19)
      • 9. Bouvot, S., Goncalves, C.A., et al: ‘A 140 GHz to 160 GHz active impedance tuner for in-situ noise characterization in BiCMOS 55 nm’. 2017 IEEE Int. Symp. on Radio-Frequency Integration Technology (RFIT), Seoul, South Korea, 2017, pp. 153155.
    20. 20)
      • 5. Gruszczynski, S., Wincza, K., Borgosz, J.: ‘Application of a rat-race coupler in low-cost load and source pull transistor amplifier design’, Microw. Opt. Technol. Lett., 2009, 51, (11), pp. 25372541.
    21. 21)
      • 23. Staszek, K., Kaminski, P., Rydosz, A., et al: ‘A least-squares approach to the calibration of multiport reflectometers’. IEEE MTT-S Int. Microwave and RF Conf., New Delhi, India, 2013, pp. 14.
    22. 22)
      • 4. Sinha, S., Kumar, A., Aniruddhan, S.: ‘A passive RF impedance tuner for 2.4 GHz ISM band applications’. 2018 IEEE 19th Wireless and Microwave Technology Conf. (WAMICON), Sand Key, USA, 2018, pp. 14.
    23. 23)
      • 3. de Foucauld, E., Severino, R., Nicolas, D., et al: ‘A 433 MHz SOI CMOS automatic impedance matching circuit’, IEEE Trans. Circuits Syst. II, 2019, 66, pp. 958962Early Access.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5816
Loading

Related content

content/journals/10.1049/iet-map.2018.5816
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address