Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Channel characterisation in rural railway environment at 28 GHz

Nowadays, rail traffic is expected to evolve into a new era of ‘smart rail mobility’, where trains, infrastructure, travellers and goods will be increasingly interconnected. Railway communications are required to support various high-data-rate applications, the communication system should be carefully designed, which makes railway scenario becomes a more and more important communication scenario. In this study, the channel characteristics are analysed for rural railway at 28 GHz. Four different deployments are considered via calibrated ray-tracing simulations in the target environment. The large-scale parameters of the mmWave channel, including the path loss, root-mean-square delay spread, Rician K-factor, angular spreads and cross-polarisation ratio are explored. The statistical properties, decorrelation distance and cross-correlations are analysed as well. The studied channel characteristics can be used to support the link level and system level design of the communication system in the similar environment.

References

    1. 1)
      • 9. Barbu, G.: ‘E-train - broadband communication with moving trains’, 2010. Available at https://www.uic.org/.
    2. 2)
      • 7. Ai, B., Cheng, X., Kürner, T., et al: ‘Challenges toward wireless communications for high-speed railway’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (5), pp. 21432158.
    3. 3)
      • 32. Guan, K., Ai, B., Peng, B., et al: ‘Towards realistic high-speed train channels at 5G millimeter-wave band–part I: paradigm, significance analysis, and scenario reconstruction’, IEEE Trans. Veh. Technol., 2018, 67, (10), pp. 91129128.
    4. 4)
      • 16. Guan, K., Zhong, Z., Ai, B., et al: ‘Propagation measurements and analysis for train stations of high-speed railway at 930 MHz’, IEEE Trans. Veh. Technol., 2014, 63, (8), pp. 34993516.
    5. 5)
      • 12. Guan, K., Zhong, Z., B, A., : ‘Assessment of LTE-R using high speed railway channel model’. Proc. 3rd Int. Conf. Commun. Mobile Comput, Qingdao, China, 2011, pp. 461464.
    6. 6)
      • 1. Guan, K., He, D., Hrovat, A., et al: ‘Challenges and chances for smart rail mobility at mmWave and THz bands from the channels viewpoint’. 2017 15th Int. Conf. on ITS Telecommunications (ITST), Warsaw, Poland, May 2017, pp. 15.
    7. 7)
      • 35. He, D., Ai, B., Schmieder, M., et al: ‘Influence analysis of typical objects in rural railway environments at 28 GHz’, IEEE Trans. Veh. Technol., 2019, 68, (3), pp. 20662076.
    8. 8)
      • 4. 3GPP: ‘Study on scenarios and requirements for next generation access technologies (release 14)’, 3rd Generation Partnership Project (3GPP) TR 38913-1430, 2017.
    9. 9)
      • 24. Wang, C., Bian, J., Sun, J., et al: ‘A survey of 5G channel measurements and models’, IEEE Commun. Surv. Tutorials, 2018, 20, (4), pp. 31423168.
    10. 10)
      • 23. Dat, P.T., Kanno, A., Yamamoto, N., et al: ‘WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications’, IEEE Commun. Mag., 2015, 53, (10), pp. 8694.
    11. 11)
      • 15. Guan, K., Zhong, Z., Ai, B., et al: ‘Propagation measurements and modeling of crossing bridges on high-speed railway at 930 MHz’, IEEE Trans. Veh. Technol., 2014, 63, (2), pp. 502517.
    12. 12)
      • 8. Chuang, M.C., Chen, M.C.: ‘A mobile proxy architecture for video services over high-speed rail environments in LTE-A networks’, IEEE Syst. J., 2015, 9, (4), pp. 12641272.
    13. 13)
      • 37. He, R., Zhong, Z., Ai, B., et al: ‘Shadow fading correlation in high-speed railway environments’, IEEE Trans. Veh. Technol., 2015, 64, (7), pp. 27622772.
    14. 14)
      • 13. Guan, K., Zhong, Z., Ai, B., et al: ‘Complete propagation model in tunnels’, IEEE Antennas Wireless Propag. Lett., 2013, 12, pp. 741744.
    15. 15)
      • 22. Chung, H., Kim, J., Noh, G., et al: ‘From architecture to field trial: A millimeter wave based MHN system for HST communications toward 5G’. 2017 European Conf. on Networks and Communications (EuCNC), Oulu, Finland, June 2017, pp. 15.
    16. 16)
      • 29. He, D., Ai, B., Guan, K., et al: ‘Channel measurement, simulation, and analysis for high-speed railway communications in 5G millimeter-wave band’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (10), pp. 31443158.
    17. 17)
      • 25. He, D., Ai, B., Guan, K., et al: ‘The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: A tutorial’, IEEE Commun. Surv. Tutorials, 2019, 21, (1), pp. 1027.
    18. 18)
      • 20. ‘5GCHAMPION project’. Available at http://www.5g-champion.eu/.
    19. 19)
      • 11. Aguado, M., Jacob, E., Saiz, P., et al: ‘Railway signaling systems and new trends in wireless data communication’. 2005 IEEE 62nd Vehicular Technology Conf., Dallas, TX, USA, September 2005, vol. 2, pp. 13331336.
    20. 20)
      • 10. Aguado, M., Onandi, O., Agustin, P.S., et al: ‘Wimax on rails’, IEEE Veh. Technol. Mag., 2008, 3, (3), pp. 4756.
    21. 21)
      • 33. Guan, K., Ai, B., Peng, B., et al: ‘Towards realistic high-speed train channels at 5 g millimeter-wave band–part II: case study for paradigm implementation’, IEEE Trans. Veh. Technol., 2018, 67, (10), pp. 91299144.
    22. 22)
      • 38. Jaeckel, S., Raschkowski, L., Börner, K., et al: ‘Quadriga: A 3-D multicell channel model with time evolution for enabling virtual field trials’, IEEE Trans. Antennas Propag., 2014, 62, (6), pp. 32423256.
    23. 23)
      • 34. He, D., Ai, B., Guan, K., et al: ‘Influence of typical railway objects in a mmWave propagation channel’, IEEE Trans. Veh. Technol., 2018, 67, (4), pp. 28802892.
    24. 24)
      • 14. Guan, K., Zhong, Z., Ai, B., et al: ‘Semi-deterministic path-loss modeling for viaduct and cutting scenarios of high-speed railway’, IEEE Antennas Wireless Propag. Lett., 2013, 12, pp. 789792.
    25. 25)
      • 31. Yang, J., Ai, B., Guan, K., et al: ‘A geometry-based stochastic channel model for the millimeter-wave band in a 3GPP high-speed train scenario’, IEEE Trans. Veh. Technol., 2018, 67, (5), pp. 38533865.
    26. 26)
      • 21. Kim, J., Chung, H.S., Choi, S.W., et al: ‘Mobile hotspot network enhancement system for high-speed railway communication’. 2017 11th European Conf. on Antennas and Propagation (EUCAP), Paris, France, March 2017, pp. 28852889.
    27. 27)
      • 30. Lin, X., Ai, B., He, D., et al: ‘Measurement based ray tracer calibration and channel analysis for high-speed railway viaduct scenario at 93.2 GHz’. 2017 IEEE Int. Symp. on Antennas and Propagation USNC/URSI National Radio Science Meeting, San Diego, CA, USA, July 2017, pp. 617618.
    28. 28)
      • 6. Ai, B., Guan, K., Rupp, M., et al: ‘Future railway services-oriented mobile communications network’, IEEE Commun. Mag., 2015, 53, (10), pp. 7885.
    29. 29)
      • 26. Nielsen, J.O., Fan, W., Eggers, P.C.F., et al: ‘A channel sounder for massive MIMO and mmWave channels’, IEEE Commun. Mag., 2018, 56, (12), pp. 6773.
    30. 30)
      • 28. He, R., Li, Q., Ai, B., et al: ‘A kernel-power-density-based algorithm for channel multipath components clustering’, IEEE Trans. Wireless Commun., 2017, 16, (11), pp. 71387151.
    31. 31)
      • 18. Guan, K., Ai, B., Zhong, Z., et al: ‘Measurements and analysis of large-scale fading characteristics in curved subway tunnels at 920 MHz, 2400 MHz, and 5705 MHz’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (5), pp. 23932405.
    32. 32)
      • 17. Masson, E., Cocheril, Y., Combeau, P., et al: ‘Radio wave propagation in curved rectangular tunnels at 5.8 GHz for metro applications’. 2011 11th Int. Conf. on ITS Telecommunications, St. Petersburg, Russia, August 2011, pp. 8185.
    33. 33)
      • 2. Guan, K., Ai, B., Peng, B., et al: ‘Scenario modules, ray-tracing simulations and analysis of millimetre wave and terahertz channels for smart rail mobility’, IET Microwave Antennas Propag., 2018, 12, (4), pp. 501508.
    34. 34)
      • 36. Schmieder, M., Peter, M., Askar, R., et al: ‘Measurement and characterization of 28 GHz high-speed train backhaul channels in rural propagation scenarios’. 12th European Conf. on Antennas and Propagation (EuCAP 2018), London, UK, April 2018, pp. 15.
    35. 35)
      • 5. ITU.R: ‘IMT vision - framework and overall objectives of the future development of IMT for 2020 and beyond’, Recommendation ITU-R M2083-0, 2015.
    36. 36)
      • 19. Rappaport, T.S., Heath Jr., R.W., Daniels, R.C., et al: ‘Millimeter wave wireless communications’ (Pearson/Prentice Hall, Upper Saddle River, NJ, USA, 2015).
    37. 37)
      • 39. 3GPP.: ‘Spatial channel model for multiple input multiple output (MIMO) simulations’, ETSI, France, 2018.
    38. 38)
      • 3. Guan, K., Li, G., Kürner, T., et al: ‘On millimeter wave and THz mobile radio channel for smart rail mobility’, IEEE Trans. Veh. Technol., 2016, 66, (7), pp. 56585674.
    39. 39)
      • 27. Mbugua, A.W., Fan, W., Ji, Y., et al: ‘Millimeter wave multi-user performance evaluation based on measured channels with virtual antenna array channel sounder’, IEEE. Access., 2018, 6, pp. 1231812326.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5811
Loading

Related content

content/journals/10.1049/iet-map.2018.5811
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address