Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Real-time temperature estimation method for electromagnetic performance improvement of a large axisymmetric radio telescope under solar radiation

The temperature field caused by solar radiation can seriously affect the electromagnetic (EM) performances of large-aperture and high-frequency radio telescopes, and achieving the EM performance improvements under solar radiation is of great importance. In this study, combining temperature simulation and measurement, a fast estimation method of the temperature field is presented. First, a temperature database based on transient temperature field simulation is constructed in advance, and by utilising the telescope's axisymmetric structure, the dimension of the database can be greatly reduced. Then, a small number of temperature sensors are installed and the real-time measured data are applied to correct the simulation temperature field extracted from the above temperature database by the table look-up method, which can ensure the temperature field estimation speed. Thus, based on the real-time estimated temperature field and the telescope's finite element model, thermal deformations can be calculated in real-time and used for deformation compensation. A 7.3 m reflector antenna with 21 temperature sensors is adopted to verify the proposed strategy, and the results show the effectiveness and feasibility of the strategy. This study can provide helpful guidance for the real-time compensation of thermal deformations derived from large axisymmetric telescopes.

References

    1. 1)
      • 25. Wang, W., Lian, P.Y., Zhang, S.X., et al: ‘Effect of facet displacement on radiation field and its application for panel adjustment of large reflector antenna’, Chin. J. Mech. Eng., 2017, 30, pp. 578586.
    2. 2)
      • 18. Ambrosini, R., Grueff, G.: ‘Analysis of the alidade temperature behaviour of the medicina VLBI radio telescope’, Astrophys. Space Sci., 1996, 235, pp. 247258.
    3. 3)
      • 4. Sinton, S., Rahmat-Samii, Y.: ‘Random surface error effects on offset cylindrical reflector antennas’, IEEE Trans. Antennas Propag., 2003, 51, (6), pp. 13311337.
    4. 4)
      • 15. Xu, W.Y., Duan, B.Y., Li, P., et al: ‘Integrated optimum design of metal space frame radomes with variable size members involving electromagnetic and structural analysis’, IET Microw. Antennas Propag., 2017, 11, (11), pp. 15651571.
    5. 5)
      • 16. Greve, A., Morris, D.: ‘The beam pattern of reflector antennas with buckled panels’, IEEE Trans. Antennas Propag., 2010, 58, (3), pp. 959962.
    6. 6)
      • 8. Feng, S.F., Wang, C.S., Duan, B.Y., et al: ‘Design of tipping structure for 110 m high-precision radio telescope’, Acta Astronaut., 2017, 141, pp. 5056.
    7. 7)
      • 24. Lian, P.Y., Wang, W., Hu, N.G.: ‘Feed adjustment method of reflector antenna based on far field’, IET Microw. Antennas Propag., 2014, 8, (10), pp. 701707.
    8. 8)
      • 2. Duan, B.Y., Wang, C.S.: ‘Reflector antenna distortion analysis using MEFCM’, IEEE Trans. Antennas Propag., 2009, 57, (10), pp. 34093413.
    9. 9)
      • 14. Greve, A., Bremer, M.: ‘Thermal design and thermal behaviour of radio telescopes and their enclosures’ (Springer, Berlin, Germany, 2010).
    10. 10)
      • 22. Dong, J., Zhong, W.Y., Wang, J.Q., et al: ‘Correcting gravitational deformation at the tianma radio telescope’, IEEE Trans. Antennas Propag., 2018, 66, (4), pp. 20442048.
    11. 11)
      • 1. Rahmat-Samii, Y., Haupt, R.L.: ‘Reflector antenna developments: a perspective on the past, present, and future’, IEEE Antennas Propag. Mag., 2015, 57, (2), pp. 8595.
    12. 12)
      • 3. Baars, J.W.M., Karcher, H.J.: ‘Seventy years of radio telescope design and construction’, Radio Sci. Bulletin, 2017, 362, pp. 1538.
    13. 13)
      • 27. Greve, A., Bremer, V.: ‘Improvement of the IRAM 30-m telescope from temperature measurements and finite-element calculations’, IEEE Trans. Antennas Propag., 2005, 53, (2), pp. 851860.
    14. 14)
      • 7. Li, T.J., Shi, J.C., Tang, Y.Q.: ‘Influence of surface error on electromagnetic performance of reflectors based on Zernike polynomials’, Acta Astronaut., 2018, 145, pp. 396407.
    15. 15)
    16. 16)
    17. 17)
      • 26. Li, P., Duan, B.Y., Wang, W., et al: ‘Electromechanical coupling analysis of ground reflector antennas under solar radiation’, IEEE Antennas Propag. Mag., 2012, 54, (5), pp. 4057.
    18. 18)
      • 28. Kehlbeck, F.: ‘Effect of solar radiation on bridge structure’, in: Liu, X.F., Deng, Y.X., Zhao, Z.Y.: ‘Transl.' (Chinese Railway Publishing House, Beijing, China, 1981), pp. 3236.
    19. 19)
      • 19. Lian, P.Y., Wang, C.S., Xue, S., et al: ‘Surface adjustment strategy for a large radio telescope with adjustable dual reflecrtors’, IET Microw. Antennas Propag., 2019, 13, (15), pp. 26692677.
    20. 20)
      • 5. Rocca, P., Anselmi, N., Massa, A.: ‘Interval arithmetic for pattern tolerance analysis of parabolic reflectors’, IEEE Trans. Antennas Propag., 2014, 62, (10), pp. 49524960.
    21. 21)
      • 21. Nikolic, B., Hills, R.E., Richer, J.S.: ‘Measurement of antenna surfaces from in- and out-of-focus beam maps using astronomical sources’, Astron. Astrophys., 2007, 465, pp. 679683.
    22. 22)
      • 6. Lian, P.Y., Duan, B.Y., Wang, W., et al: ‘Effects of non-uniform surface errors along the radius on reflector's radiation characteristic and its quality evaluation’, IEEE Trans. Antennas Propag., 2015, 63, (5), pp. 23122316.
    23. 23)
      • 20. Rahmat-Samii, Y.: ‘Surface diagnosis of large reflector antennas using microwave holographic metrology: an iterative approach’, Radio Sci.., 1984, 19, pp. 12051217.
    24. 24)
      • 12. Fan, F., Jin, X.F., Shen, S.Z.: ‘Effect of non-uniform solar temperature field on cable-net structure of reflector of large radio telescope – FAST’, Adv. Struct. Eng., 2009, 12, (4), pp. 503512.
    25. 25)
      • 23. Martinez-Lorenzo, J.A., Rappaport, C.M., Pino, A.G.: ‘Reflector antenna distortion determination: an iterative-field-matrix solution’, Radio Sci.., 2008, 43, p. RS4019.
    26. 26)
      • 13. Chung, K.H., DiCarlo, A.: ‘Radome-enclosed antenna's temperature and velocity fields’, Appl. Therm. Eng., 2013, 50, pp. 437444.
    27. 27)
      • 9. Ruze, J.: ‘Antenna tolerance theory - a review’, Proc. IEEE, 1966, 54, (4), pp. 633640.
    28. 28)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5785
Loading

Related content

content/journals/10.1049/iet-map.2018.5785
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address