access icon free Robust digital predistorter for RF power amplifier linearisation

In this study, the authors propose a new numerically stable digital predistorter for the linearisation of RF Power amplifiers. The proposed predistorter is based on the parameterised Gegenbauer polynomials that can be optimised for maximum predistorter efficiency and stability under different input signal distributions. The robustness and the efficiency of the proposed predistorter are experimentally demonstrated and compared to the ones of previously published polynomial model-based predistorters. The obtained results revealed exceptional numerical stability regardless of the input signal statistics, making the proposed predistorter suitable for the linearisation of multimode and broadband non-linear wireless transmitters.

Inspec keywords: polynomials; radiofrequency power amplifiers; circuit stability; statistical analysis; digital circuits; numerical stability; linearisation techniques

Other keywords: input signal distributions; maximum predistorter efficiency; numerically stable digital predistorter; broadband nonlinear wireless transmitters; polynomial model-based predistorters; input signal statistics; multimode linearization; parameterised Gegenbauer polynomials; robust digital predistorter; RF power amplifier linearisation

Subjects: Interpolation and function approximation (numerical analysis); Amplifiers; Other digital circuits; Microwave circuits and devices

References

    1. 1)
      • 1. Ghannouchi, M.F., Hammi, O.: ‘Behavioral modeling and predistortion’, IEEE Microw. Mag., 2009, 10, (7), pp. 5264.
    2. 2)
      • 5. Kim, J., Konstantinou, K.: ‘Digital predistortion of wideband signals based on power amplifier model with memory’, Electron Lett., 2001, 37, (23), pp. 14171418.
    3. 3)
      • 14. Saied-Bouajina, S., Hammi, O., Jaidane-Saidane, M., et al: ‘Experimental approach for robustidentification of radiofrequency poweramplifier behavioural models using polynomial structures’, IET Microw. Antennas Propag., 2010, 4, (11), pp. 18181828.
    4. 4)
      • 7. Ding, L., Zhou, G.T., Morgan, D.R., et al: ‘A robust digital baseband predistorter constructed using memory polynomials’, IEEE Trans. Commun., 2004, 52, (1), pp. 159165.
    5. 5)
      • 2. Ghannouchi, M.F., Younes, M., Rawat, M.: ‘Distortion and impairments mitigation and compensation of single- and multiband wireless transmitters’, IET Microw. Antennas Propag., 2013, 7, (7), pp. 518534.
    6. 6)
      • 6. Zhu, A., Brazil, T.J.: ‘Behavioral modeling of RF power amplifiers based on pruned Volterra series’, IEEE Microw. Wireless Compon. Lett., 2004, 14, (12), pp. 563565.
    7. 7)
      • 10. Isaksson, M., Rönnow, D.: ‘A parameter-reduced Volterra model for dynamic RF power amplifier modeling based on orthonormal basis functions’, Int. J. RF Microw. Comput.-Aided Eng., 2007, 17, (6), pp. 542551.
    8. 8)
      • 15. Lajnef, S., Boulejfen, N., Abdelhfiz, A., et al: ‘2-D cartesian memory polynomial model for nonlinearity and I/Q imperfections compensation in concurrent dual-band transmitters', IEEE Trans. Circuits Syst. II, 2016, 63, (1), pp. 1416.
    9. 9)
      • 13. Aladren, L., Garcia-Ducar, P., De Mingo, J., et al: ‘Behavioral power amplifier modeling and digital predistorter designwith a chirp excitation signal’. IEEE 73rd Vehicular Technology Conf., Yokohama, Japan, May 2011, pp. 17.
    10. 10)
      • 4. Crespo-Cadenas, C., Reina-Tosina, J., Madero-Ayora, M.J.: ‘Volterra behavioral model for wideband RF amplifiers’, IEEE Trans. Microw. Theory Tech., 2007, 55, (3), pp. 449457.
    11. 11)
      • 3. Schetzen, M.: ‘Theory of th-order inverses of nonlinear systems’, IEEE Trans. Circuits Syst., 1976, CAS-23, (5), pp. 285291.
    12. 12)
      • 12. Raich, R., Zhou, G.T.: ‘Orthogonal polynomials for complex Gaussian processes’, IEEE Trans. Signal Process, 2004, 52, (10), pp. 27882797.
    13. 13)
      • 11. Raich, R., Qian, H., Zhou, G.T.: ‘Orthogonal polynomials for power amplifier modeling and predistorter design’, IEEE Trans. Vehi. Technol., 2004, 53, (5), pp. 14681479.
    14. 14)
      • 8. Zhou, G.T., Kenney, J.S.: ‘Predicting spectral regrowth of nonlinear power amplifiers’, IEEE Trans. Commun., 2002, 50, (5), pp. 718722.
    15. 15)
      • 9. Blachman, N.: ‘The output signals and noise from a nonlinearity with amplitude-dependent phase shift’, IEEE Trans. Inf. Theory, 1979, IT-25, (1), pp. 7779.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5680
Loading

Related content

content/journals/10.1049/iet-map.2018.5680
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading