access icon free Multi-beam monopulse substrate integrated waveguide slot array antenna

A multi-beam slot array antenna is proposed in the 10-GHz band for a monopulse tracking system with resolution enhancement techniques. The antenna architecture combines a four-subarray substrate integrated waveguide (SIW) slot antenna, a multi-beam-forming network of microstrip Rotman lens array, and a SIW comparator of four-quadrant monopulse technique. A method to form difference patterns in both E-plane and H-plane for mutibeams is presented, and the method can improve the accuracy of angle detection for all beams. The key point of the method is to compensate the phase difference caused by the beam deflection between the two subarrays (quadrants) by constraining input delay lines of the Rotman lens array. To validate the proposed concepts, an antenna prototype is realized and measured. The experimental results demonstrate a scanning range of ±36° with −5 dB crossover level between two adjacent sum beams in the E-plane. The corresponding difference patterns are generated in both E-plane and H-plane via the monopulse comparator. The multi-beam monopulse system can achieve gains between 21.7 and 23.5 dBi for all sum beams at the center frequency of 10 GHz. This multi-beam monopulse slot antenna can be applied in radars and communication systems requiring beam-scanning capabilities and target tracking.

Inspec keywords: target tracking; comparators (circuits); array signal processing; radar antennas; slot antenna arrays; lens antennas; substrate integrated waveguides; microstrip antenna arrays; antenna radiation patterns

Other keywords: H-plane; radar system; frequency 10 GHz; scanning range; SIW comparator; antenna architecture; multibeam monopulse system; beam-scanning capabilities; microstrip Rotman lens array; communication system; monopulse tracking system; angle resolution; resolution enhancement techniques; beam deflection; difference patterns; input delay lines; monopulse comparator; phase difference compensation; E-plane; multibeam monopulse SIW slot array antenna; four-subarray SIW slot antenna; target tracking; angle detection; multibeamforming network; four-quadrant monopulse technique

Subjects: Radar equipment, systems and applications; Antenna arrays; Waveguides and microwave transmission lines; Signal processing and detection; Other digital circuits

References

    1. 1)
      • 4. Liu, Y., Yang, H., Jin, Z., et al: ‘A multibeam cylindrically conformal slot array antenna based on a modified Rotman lens’, IEEE Trans. Antennas Propag., 2018, 66, (7), pp. 34413452.
    2. 2)
      • 10. Zhang, J., Zhang, X., Shen, D., et al: ‘Packaged microstrip line: a new quasi-tem line for microwave and millimeter-wave applications’, IEEE Trans. Microw. Theory Tech., 2017, 65, (99), pp. 113.
    3. 3)
      • 17. Schulwitz, L., Mortazawi, A.: ‘A monopulse Rotman lens phased array for enhanced angular resolution’. IEEE/MTT-S Int. Microwave Symp., Honolulu, HI, USA, June 2007, pp. 18711874.
    4. 4)
      • 24. Coetzee, J.C., Joubert, J., McNamara, D.A.: ‘Off-center-frequency analysis of a complete planar slotted-waveguide array consisting of subarrays’, IEEE Trans. Antennas Propag., 2000, 48, (11), pp. 17461755.
    5. 5)
      • 6. Alibakhshi-Kenari, M., Andújar, A., Anguera, J.: ‘New compact printed leaky-wave antenna with beam steering’, Microw. Opt. Technol. Lett., 2016, 58, (1), pp. 215217.
    6. 6)
      • 26. Liu, Y., Yang, H., Jin, Z., et al: ‘Compact Rotman lens-fed slot array antenna with low sidelobes’, IET Microw. Antennas Propag., 2018, 12, (5), pp. 656661.
    7. 7)
      • 21. Elliott, R.S., O'Loughlin, W.: ‘The design of slot arrays including internal mutual coupling’, IEEE Trans. Antennas Propag., 1986, AP-34, (9), pp. 11491154.
    8. 8)
      • 18. Tekkouk, K., Ettorre, M., Coq, L.L., et al: ‘SIW pillbox antenna for monopulse radar applications’, IEEE Trans. Antennas Propag., 2015, 63, (9), pp. 39183927.
    9. 9)
      • 2. Kinsey, R.R.: ‘An edge-slotted waveguide array with dual-plane monopulse’, IEEE Trans. Antennas Propag., 2002, 47, (3), pp. 474481.
    10. 10)
      • 14. Chen, H., Che, W., He, Q., et al: ‘Compact substrate integrated waveguide (SIW) monopulse network for Ku-band tracking system applications’, IEEE Trans. Microw. Theory Tech., 2014, 62, (3), pp. 472480.
    11. 11)
      • 11. Wang, H., Fang, D.G., Chen, X.G.: ‘A compact single layer monopulse microstrip antenna array’, IEEE Trans. Antennas Propag., 2006, 54, (2), pp. 503509.
    12. 12)
      • 15. Liu, B., Hong, W., Kuai, Z., et al: ‘Substrate integrated waveguide (SIW) monopulse slot antenna array’, IEEE Trans. Antennas Propag., 2009, 57, (1), pp. 275279.
    13. 13)
      • 19. Hu, Y., Zusheng, J., Montisci, G., et al: ‘Design equations for cylindrically conformal arrays of longitudinal slots’, IEEE Trans. Antennas Propag., 2016, 64, (1), pp. 8088.
    14. 14)
      • 12. Cheng, Y.J., Hong, W., Wu, K.: ‘Design of a monopulse antenna using a dual V-type linearly tapered slot antenna (DVLTSA)’, IEEE Trans. Antennas Propag., 2008, 56, (9), pp. 29032909.
    15. 15)
      • 7. Alibakhshikenari, M., Virdee, B.S., Ali, A., et al: ‘A novel monofilar-archimedean metamaterial inspired leaky-wave antenna for scanning application for passive radar systems’, Microw Opt Technol Lett, 2018, 60, (8), pp. 20552060.
    16. 16)
      • 27. Cheng, Y.J., Hong, W., Wu, K., et al: ‘Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications’, IEEE Trans. Antennas Propag., 2008, 56, (8), pp. 25042513.
    17. 17)
      • 25. Rotman, W., Turner, R.: ‘Wide-angle microwave lens for line source applications’, IEEE Trans. Antennas Propag., 1962, 11, (6), pp. 623632.
    18. 18)
      • 23. Li, Y., Wei, H., Guang, H., et al: ‘Simulation and experiment on SIW slot array antennas’, IEEE Microw. Wirel. Compon. Lett., 2004, 14, (9), pp. 446448.
    19. 19)
      • 22. Yang, H., Montisci, G., Jin, Z., et al: ‘Improved design of low sidelobe substrate integrated waveguide longitudinal slot array’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 237240.
    20. 20)
      • 8. Yu, Z.W., Wang, G.M., Zhang, C.X.: ‘A broadband planar monopulse antenna array of C-band’, IEEE Antennas Wirel. Propag. Lett., 2009, 8, (4), pp. 13251328.
    21. 21)
      • 1. Sherman, S.M., Barton, D.K.: ‘Monopulse principles and techniques’ (Artech House, Norwood, Massachusetts, USA, 2011).
    22. 22)
      • 16. Cheng, Y.J., Hong, W., Wu, K.: ‘94 GHz substrate integrated monopulse antenna array’, IEEE Trans. Antennas Propag., 2012, 60, (1), pp. 121129.
    23. 23)
      • 28. Lee, W., Kim, J., Yoon, Y.J.: ‘Compact two-layer Rotman lens-fed microstrip antenna array at 24 GHz’, IEEE Trans. Antennas Propag., 2011, 59, (2), pp. 460466.
    24. 24)
      • 9. Deslandes, D., Wu, K.: ‘Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide’, IEEE Trans. Microw. Theory Tech., 2006, 54, (6), pp. 25162526.
    25. 25)
      • 20. Elliott, R.S.: ‘An improved design procedure for small arrays of shunt slots’, IEEE Trans. Antennas Propag., 1983, AP-31, (1), pp. 4853.
    26. 26)
      • 3. Baggen, L., Holzwarth, S.: ‘Satcom-on-the-move: digital beam forming versus phased array’. European Conf. Antennas and Propagation, The Hague, Netherlands, April 2014, pp. 26102614.
    27. 27)
      • 13. Cheng, Y.J., Hong, W., Wu, K.: ‘Millimetre-wave monopulse antenna incorporating substrate integrated waveguide phase shifter’, Microw. Antennas Propag. IET, 2008, 2, (1), pp. 4852.
    28. 28)
      • 5. Ettorre, M., Sauleau, R., Coq, L.L.: ‘Multi-beam multi-layer leaky-wave SIW pillbox antenna for millimeter-wave applications’, IEEE Trans. Antennas Propag., 2011, 59, (4), pp. 10931100.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5567
Loading

Related content

content/journals/10.1049/iet-map.2018.5567
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading