access icon free Theoretical study of extended interaction frequency-locking oscillator based on carbon nanotube cold cathodes

An extended interaction frequency-locking oscillator based on carbon nanotube (CNT) cold cathode is proposed to overcome locked-frequency limits of the conventional oscillator. Compared with the conventional oscillators, the oscillation frequency is locked by a modulation electron beam, which can be obtained in a field emission CNT cold cathode electron gun. The frequency-locking signal does not enter the high-frequency (HF) system but imposes an additional HF electric field on the cathode surface by a microstrip structure, which consumes considerably less power to lock the oscillation frequency. A ladder structure extended interaction oscillator operating in 2π mode is numerically investigated by three-dimensional Particle-In-Cell simulation code. By analysing the impacts of different frequency-locking power on the locked ranges, the results show that the average output power of 30.6 W is achieved at 35.11 GHz when the frequency-locking power consumption is 460 mW. The 3-dB bandwidth of a frequency-locking region reaches 100 MHz.

Inspec keywords: carbon nanotubes; electron field emission; millimetre wave oscillators; cathodes

Other keywords: frequency-locking region; cathode surface; microstrip structure; carbon nanotube cold cathodes; field emission CNT cold cathode electron gun; frequency-locking power consumption; extended interaction frequency-locking oscillator; three-dimensional particle-in-cell simulation code; frequency 35.11 GHz; oscillation frequency; modulation electron beam; power 30.6 W; HF electric field

Subjects: Microwave circuits and devices; Fullerene, nanotube and related devices; Electron emission, materials and cathodes; Oscillators; Fullerenes, carbon nanotubes, and related materials (engineering materials science)

References

    1. 1)
      • 26. Jin, Y., Gengmin, Z., Haitao, Z., et al: ‘Modulation of field emission by small AC signals’, 2017.
    2. 2)
      • 25. Legagneux, P., Le Sech, N., Guiset, P., et al: ‘Carbon nanotube based cathodes for microwave amplifiers’. IEEE Int. Vacuum Electronics Conf., IVEC'09, Rome, Italy, 2009, pp. 8081.
    3. 3)
      • 19. Yuan, X., Wang, B., Cole, M.T., et al: ‘Theoretical research on a multibeam-modulated electron gun based on carbon nanotube cold cathodes’, IEEE Trans. Electron Devices, 2016, 63, (7), pp. 29192924.
    4. 4)
      • 11. Zhu, W.: ‘Vacuum microelectronic’ (John Wiley & Sons, New York, 2001).
    5. 5)
      • 12. Armstrong, C.M.: ‘The quest for the ultimate vacuum tube’, IEEE Spectr., 2015, 52, (12), pp. 2829.
    6. 6)
      • 4. Paoloni, C., Mineo, M., Yin, H., et al: ‘Microwave coupler for W-band micro re-entrant square cavities’, IET Microw., Antennas Propag., 2016, 10, (7), pp. 764769.
    7. 7)
      • 23. Yin, Y., He, W., Zhang, L., et al: ‘Preliminary design and optimization of a G-band extended interaction oscillator based on a pseudospark-sourced electron beam’, Phys. Plasmas, 2015, 22, (7), p. 73102.
    8. 8)
      • 3. Shin, Y.-M., Wang, J.-X., Barnett, L.R., et al: ‘Particle-in-cell simulation analysis of a multicavity W-band sheet beam klystron’, IEEE Trans. Electron Devices, 2011, 58, (1), pp. 251258.
    9. 9)
      • 22. Shu, G., He, W., Zhang, L., et al: ‘Study of a 0.2-THz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam’, IEEE Trans. Electron Devices, 2016, 63, (12), pp. 49554960.
    10. 10)
      • 17. Teo, K.B.K., Minoux, E., Hudanski, L., et al: ‘Microwave devices: carbon nanotubes as cold cathodes’, Nature, 2005, 437, (7061), p. 968.
    11. 11)
      • 15. Garven, M., Spark, S.N., Cross, A.W., et al: ‘Gyrotron experiments employing a field emission array cathode’, Phys. Rev. Lett., 1996, 77, (11), p. 2320.
    12. 12)
      • 2. Barker, R.J., Schamiloglu, E.: ‘High-power microwave sources and technologies’ (Wiley, New York, 1987).
    13. 13)
      • 8. Yuan, X., Cole, M.T., Zhang, Y., et al: ‘Parametrically optimized carbon nanotube-coated cold cathode spindt arrays’, Nanomaterials, 2017, 7, (1), p. 13.
    14. 14)
      • 16. Bandy, S.G., Green, M.C., Spindt, C.A., et al: ‘Application of gated field emitter arrays in microwave amplifier tubes’. Eleventh Int. Vacuum Microelectronics Conf., Ashville, NC, 1998, pp. 132133.
    15. 15)
      • 9. Whaley, D.R., Duggal, R., Armstrong, C.M., et al: ‘100 W operation of a cold cathode TWT’, IEEE Trans. Electron Devices, 2009, 56, (5), pp. 896905.
    16. 16)
      • 18. Yuan, X., Zhang, Y., Yang, H., et al: ‘A gridded high-compression-ratio carbon nanotube cold cathode electron gun’, IEEE Electron Device Lett., 2015, 36, (4), pp. 399401.
    17. 17)
      • 1. Booske, J.H., Dobbs, R.J., Joye, C.D., et al: ‘Vacuum electronic high power terahertz sources’, IEEE Trans. Terahertz Sci. Technol., 2011, 1, (1), pp. 5475.
    18. 18)
      • 20. Xie, J., Yuan, X., Zhao, L., et al: ‘Simulation of extended interaction oscillator based on carbon nanotube cold cathode’. 2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), Liverpool, UK, 2017, pp. 12.
    19. 19)
      • 7. Collins, C.M., Parmee, R.J., Milne, W.I., et al: ‘High performance field emitters’, Adv. Sci., 2016, 3, (5), p. 8.
    20. 20)
      • 24. Minoux, E., Hudanski, L., Teo, K.B.K., et al: ‘Carbon nanotube cathodes as electron sources for microwave amplifiers’. , Proc. 2007 7th IEEE Int. Conf. Nanotechnol. – IEEE-NANO 2007, Hong Kong, China, 2007, pp. 12481251.
    21. 21)
      • 21. Wilsen, C.B., Lau, Y.Y., Chernin, D.P., et al: ‘A note on current modulation from nonlinear electron orbits’, IEEE Trans. Plasma Sci., 2002, 30, (3), pp. 11761178.
    22. 22)
      • 13. Whaley, D.R., Gannon, B.M., Heinen, V.O., et al: ‘Experimental demonstration of an emission-gated traveling-wave tube amplifier’, IEEE Trans. Plasma Sci., 2002, 30, (3), pp. 9981008.
    23. 23)
      • 6. Gilmour, A.S.: ‘Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons’ (Artech House, Norwood, MA, 2011).
    24. 24)
      • 14. Minami, K., Hayatsu, Y., Sato, T., et al: ‘Experiment on a cold cathode gyrotron’. IEEE Conf. Record-Abstracts: the 29th IEEE Int. Conf. on Plasma Science, ICOPS 2002, Banff, AL, CA, 2002, p. 184.
    25. 25)
      • 10. Lally, P.M., Goren, Y., Nettesheim, E.A.: ‘An X-band tuned amplifier with a field-emission cathode’, IEEE Trans. Electron Devices, 1989, 36, (11), pp. 27382741.
    26. 26)
      • 5. Siegel, P.H.: ‘Terahertz technology’, IEEE Trans. Microw. Theory Tech., 2002, 50, (3), pp. 910928.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5509
Loading

Related content

content/journals/10.1049/iet-map.2018.5509
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading