access icon free Far-field boundary estimation for the high-power UWB pulsed antennas

In this study, a method to estimate the far-field boundary of the high-power ultra-wideband (UWB) pulsed antennas is presented. By analysing the properties of the UWB pulsed antennas, it shows that the radiation space should be separated based on the behaviours of time or phase differences caused by the distribution of radiation elements of the antenna. In the time domain, characteristic parameters of the radiated pulse can be different due to various waveforms, which means that the far-field condition is waveform dependent. So, for all the various waveforms, it is difficult to formulate a universal far-field condition with a certain time-domain parameter. Therefore, the far-field boundary is better to be estimated in the frequency domain, which is obtained by substituting the cut-off frequencies of the UWB system into the classical far-field conditions. The cut-off frequencies are determined by the 90% energy edge frequencies of the radiating field. Finally, a reflector Impulse Radiating Antenna (IRA) system is developed to verify the proposed method. The electric fields of the IRA from the near- to far-field regions are measured, which indicates that the far-field boundary calculated by the proposed method agrees with the experimental result well.

Inspec keywords: reflector antennas; electric field measurement; electromagnetic pulse; ultra wideband antennas; antenna radiation patterns

Other keywords: radiation element distribution; reflector IRA system; radiation space; time-domain parameter; phase difference; radiating field; high-power UWB pulsed antennas; time difference; high-power ultra-wideband pulsed antennas; characteristic parameters; universal far-field condition; far-field boundary estimation; reflector impulse radiating antenna system; energy edge frequencies; cut-off frequencies

Subjects: Single antennas; Voltage measurement; Electromagnetic compatibility and interference

References

    1. 1)
      • 6. Polk, C.: ‘Transient behavior of aperture antennas’, Proc. IRE, 1960, 48, (7), pp. 12811288.
    2. 2)
      • 15. Meng, F.: ‘High power EM pulse technology’ (National Defense Industry Press, Beijing, 2011, 1st edn.).
    3. 3)
      • 18. Gubanov, V.P., Efremov, A.M., Koshelev, V.I., et al: ‘Sources of high-power ultra-wideband radiation pulses with a single antenna and a multi-element array’, Instrum. Exp. Tech., 2005, 48, (3), pp. 312320.
    4. 4)
      • 2. Balanis, C.A.: ‘Antenna theory: analysis and design’ (John Wiley & Sons, Inc., New York, 2005, 3rd edn.).
    5. 5)
      • 22. Giri, D.V., Tesche, F.M.: ‘Classification of intentional electromagnetic environments (IEME)’, IEEE Trans. Electromagn. Compat., 2004, 46, (3), pp. 322328.
    6. 6)
      • 3. Agee, F.J., Baum, C.E., Prather, W.D., et al: ‘Ultra-wideband transmitter research’, IEEE Trans. Plasma Sci., 1998, 26, (3), pp. 860873.
    7. 7)
      • 10. Shlivinski, A., Heyman, E.: ‘Time-domain near-field analysis of short-pulse antennas—part I: spherical wave (multipole) expansion’, IEEE Trans. Antennas Propag., 1999, 47, (2), pp. 271279.
    8. 8)
      • 8. Chang, D.C., Harrison, C.W.: ‘On the pulse response of a flush-mounted coaxial aperture’, IEEE Trans. Electromagn. Compat., 1971, EMC-13, (1), pp. 1418.
    9. 9)
      • 23. Baum, C.E., Nitsch, D.H.: ‘Band ratio and frequency domain norms’, in Interaction Notes 584, May 2003.
    10. 10)
      • 16. Shlivinski, A., Heyman, E., Kastner, R.: ‘Antenna characterization in the time domain’, IEEE Trans. Antennas Propag., 1997, 45, (1), pp. 11401149.
    11. 11)
      • 25. Farr, E.G.: ‘Optimizing the feed impedance of impulse radiating antennas part I: reflector IRAs’, in Sensor and Simulation Notes, 354, January 1982.
    12. 12)
      • 9. Heyman, E., Melamed, T.: ‘Certain consideration in aperture synthesis for ultra-wideband/short-pulsed fields’, IEEE Trans. Antennas Propag., 1994, 42, (4), pp. 518525.
    13. 13)
      • 21. IEC Std 61000-2-13.: ‘Electromagnetic compatibility (EMC) – part 2–13: environment – high-power electromagnetic (HPEM) environments – radiated and conducted’, Reference number IEC 61000-2-13, 2005(E).
    14. 14)
      • 4. Giri, D.V., Lehr, J.M., Prather, W.D., et al: ‘Intermediate and far fields of a reflector antenna energized by a hydrogen spark-gap switched pulser’, IEEE Trans. Plasma Sci., 2000, 28, (5), pp. 16311636.
    15. 15)
      • 20. Bucci, O.M., Franceschetti, G.: ‘On the spatial bandwidth of scattered fields’, IEEE Trans. Antennas Propag., 1987, AP-35, (12), pp. 14451455.
    16. 16)
      • 12. Luebbers, R.J., Kunz, K.S., Schneider, M., et al: ‘A finite difference time-domain near zone to far zone transformation’, IEEE Trans. Antennas Propag., 1991, 39, (4), pp. 429433.
    17. 17)
      • 24. Yuan, X., Zhang, H., Xu, Z., et al: ‘Research on high-repetition and high-stability pulser based on avalanche transistor’, Res. Prog. SSE, 2010, 30, pp. 6468.
    18. 18)
      • 14. Giri, D.V.: ‘High-power electromagnetic radiators: nonlethal weapon and other applications’ (Harvard University Press, Massachusetts, 2004, 1st edn.).
    19. 19)
      • 1. Kraus, J.D., Marhefka, R.J.: ‘Antennas: for all applications’ (Tata McGraw-Hill Company, Limited, New Delhi, 1997, 2nd edn.).
    20. 20)
      • 5. Franceschetti, G., Papas, C.H.: ‘Pulsed antennas’, IEEE Trans. Antennas Propag., 1974, 22, (5), pp. 651661.
    21. 21)
      • 7. Cheng, D.K., Tseng, F.I.: ‘Transient and steady-state antenna pattern characteristics for arbitrary time signals’, IEEE Trans. Antennas Propag. (Commun.), 1964, 12, (4), pp. 492493.
    22. 22)
      • 13. Hu, F.G., Wang, C.F.: ‘Higher-order DG-FETD modeling of wideband antennas with resistive loading’, IEEE Antennas Wirel. Propag. Lett., 2013, 12, (12), pp. 10251028.
    23. 23)
      • 19. IEEE Std 145™-2013.: ‘IEEE Standard for Definitions of Terms for Antennas’, 2013.
    24. 24)
      • 17. Efremov, A.M., Koshelev, V.I., Kovalchuk, B.M., et al: ‘High-power sources of ultra-wideband radiation with sub-nanosecond pulse lengths’, Instrum. Exp. Tech., 2011, 54, (1), pp. 7076.
    25. 25)
      • 11. Shlivinski, A., Heyman, E.: ‘Time-domain near-field analysis of short-pulse antennas—part II: reactive energy and the antenna Q’, IEEE Trans. Antennas Propag., 1999, 47, (2), pp. 280286.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5237
Loading

Related content

content/journals/10.1049/iet-map.2018.5237
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading