http://iet.metastore.ingenta.com
1887

Electric field distribution and SAR inside a human eye exposed to VR glasses

Electric field distribution and SAR inside a human eye exposed to VR glasses

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The aim of this study is a numerical analysis of the electric field and the specific absorption rate (SAR) distribution within a realistic 3D-human eye model exposed to electromagnetic (EM) wave of virtual reality (VR) glasses at the frequency of third generation, long-term evolution-4G, and the frequency of the latest generation of mobile networks – 5G. To obtain the values of the electric field and SAR, the numerical solution of equations of EM waves propagation has been used. A new realistic 3D-human head and human eye model has been created. The obtained results are shown for different biological tissues of the eye exposed to EM radiation from VR glasses at different frequencies. The maximum absorption of EM energy will be discussed for the following frequencies: 900 MHz, 2.6 GHz, and 28 GHz. The maximum values of electric field strength in the human eye tissue at the frequencies 28 GHz and 900 MHz are 94.43 and 137.3 V/m, respectively (higher than referent values), whereas for 2.6 GHz amounts 8.62 V/m (lower than referent limits). The obtained SAR peaks do not overcome prescribed safety values.

References

    1. 1)
      • 1. Yang, P.: ‘The untold story of magic leap, the world's most secretive startup’, 2016. Available at https://goo.gl/tfu1jg, accessed July 2018.
    2. 2)
      • 2. Virtual reality (VR) market by hardware and software for (consumer, commercial, enterprise, medical, aerospace and defence, automotive, energy and others). Global industry analysis, size, share, growth, trends, and forecast, 2016–2022’, Zion Market Research report, 2018. Available at https://goo.gl/B32UnG, accessed July 2018.
    3. 3)
      • 3. 1999/519/EC: ‘Council recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)’, 1999. Available at https://goo.gl/aG8rov, accessed July 2018.
    4. 4)
      • 4. C95.1-2005: ‘IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz’, 2006, doi: 10.1109/IEEESTD.2006.99501.
    5. 5)
      • 5. Regulations on limits of exposure to non-ionizing radiation’, Official Gazette of RS, no. 104/09, 2009. Available at https://goo.gl/81LtUZ, accessed July 2018.
    6. 6)
      • 6. ICNIRP guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)’, International Commission on Non-Ionizing Radiation Protection, 1998. Available at https://goo.gl/oz5hUr, accessed July 2018.
    7. 7)
      • 7. IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans, international agency for research on cancer’, Press Release no. 8, 2011. Available at https://goo.gl/JWB5ys, accessed July 2018.
    8. 8)
      • 8. Hirata, A., Matsuyama, S., Shiozawa, T.: ‘Temperature rises in the human eye exposed to EM waves in the frequency range 0.6–6 GHz’, IEEE Trans. Electromagn. Compat., 2000, 42, (4), pp. 386393, doi: 10.1109/15.902308.
    9. 9)
      • 9. Bernardi, P., Cavagnaro, M., Pisa, S., et al: ‘SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN’, IEEE Trans. Microw. Theory Tech., 1998, 46, (12), pp. 20742082, doi: 10.1109/22.739285.
    10. 10)
      • 10. Bhat, M.A., Kumar, V.: ‘Calculation of SAR and measurement of temperature change of human head due to the mobile phone waves at frequencies 900 MHz and 1800 MHz’, Adv. Phys. Theor. Appl., 2013, 16, pp. 5463. Available at https://goo.gl/8g2ySw, accessed July 2018.
    11. 11)
      • 11. Wessapan, T., Srisawatdhisukul, S., Rattanadecho, P.: ‘Specific absorption rate and temperature distributions in human head subjected to mobile phone radiation at different frequencies’, Int. J. Heat Mass Transf., 2012, 55, pp. 347359, doi: 10.1016/j.ijheatmasstransfer.2011.09.027.
    12. 12)
      • 12. Wessapan, T., Rattanadecho, P.: ‘Specific absorption rate and temperature increase in the human eye due to electromagnetic fields exposure at different frequencies’, Int. J. Heat Mass Transfer, 2013, 64, pp. 426435, doi: 10.1016/j.ijheatmasstransfer.2013.04.060.
    13. 13)
      • 13. Lazzi, G., DeMarco, S.C., Liu, W., et al: ‘Computed SAR and thermal elevation in a 0.25 mm 2D model of the human eye and head in response to an implanted retinal stimulator – part II: results’, IEEE Trans. Antennas Propag., 2003, 51, pp. 22862295, doi: 10.1109/TAP.2003.816395.
    14. 14)
      • 14. Hirata, A.: ‘Temperature increase in human eyes due to near-field and far-field exposures at 900 MHz, 1.5 GHz, and 1.9 GHz’, IEEE Trans. Electromagn. Compat., 2005, 47, pp. 6876, doi: 10.1109/TEMC.2004.842113.
    15. 15)
      • 15. Hirtl, R., Schmid, G.: ‘Numerical analysis of specific absorption rate in the human head due to a 13.56 MHz RFID-based intra-ocular pressure measurement system’, Phys. Med. Biol., 2013, 58, (18), pp. 267277, doi: 10.1088/0031-9155/58/18/N267.
    16. 16)
      • 16. Schaumburg, F., Guarnieri, F.A.: ‘Assessment of thermal effects in a model of the human head implanted with a wireless active microvalve for the treatment of glaucoma creating a filtering bleb’, Phys. Med. Biol., 2017, 62, (9), pp. 191203, doi: 10.1088/1361-6560/aa5dae.
    17. 17)
      • 17. Buccella, C., De Santis, V., Feliziani, M.: ‘Numerical prediction of SAR and thermal elevation in a 0.25 mm 3-D model of the human eye exposed to handheld transmitters’. Proc. IEEE Int. Symp. Electromagnetic Compatibility, Honolulu, HI, USA, July 2007, pp. 16, doi: 10.1109/ISEMC.2007.77.
    18. 18)
      • 18. Azar, Y., Wong, G.N., Wang, K., et al: ‘28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York city’. Proc. IEEE Int. Conf. Communications, Budapest, Hungary, June 2013, pp. 51435147, doi: 10.1109/ICC.2013.6655399.
    19. 19)
      • 19. Zhao, H., Mayzus, R., Sun, S., et al: ‘28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York city’. Proc. IEEE Int. Conf. Communications, Budapest, Hungary, June 2013, pp. 51635167, doi: 10.1109/ICC.2013.6655403.
    20. 20)
      • 20. Samimi, M., Wang, K., Azar, Y., et al: ‘28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York city’. Proc. IEEE 77th Vehicular Technology Conf. (VTC Spring), Dresden Germany, June 2013, pp. 16, doi: 10.1109/VTCSpring.2013.6691812.
    21. 21)
      • 21. Conil, E., Hadjem, A., Lacroux, F., et al: ‘Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain’, Phys. Med. Biol., 2008, 53, pp. 15111525, doi: 10.1088/0031-9155/53/6/001.
    22. 22)
      • 22. Fujimoto, M., Hirata, A., Wang, J., et al: ‘FDTD-derived correlation of maximum temperature increase and peak SAR in child and adult head models due to dipole antenna’, IEEE Trans. Electromagn. Compat., 2006, 48, (1), pp. 240247, doi: 10.1109/TEMC.2006.870816.
    23. 23)
      • 23. Stanković, V., Jovanović, D., Krstić, D., et al: ‘Electric field distribution and SAR in human head from mobile phones’. Proc. Ninth Int. Symp. Advanced Topics in Electrical Engineering, Bucharest, Romania, May 2015, pp. 392397, doi: 10.1109/ATEE.2015.7133835.
    24. 24)
      • 24. Dielectric properties of tissues. Available at https://goo.gl/H1Dwve, accessed July 2018.
    25. 25)
      • 25. Gabriel, C.: ‘Compilation of the dielectric properties of body tissues at RF and microwave frequencies’, Final Technical Report AL/OE-TR-1996-0037. RFR Division, Brooks Air Force Base, San Antonio, USA. Available at https://goo.gl/Lp66NU, accessed July 2018.
    26. 26)
      • 26. Hirata, A., Watanabe, S., Fujiwara, O., et al: ‘Temperature elevation in the eye of anatomically based human head models for plane-wave exposures’, Phys. Med. Biol., 2007, 52, (21), pp. 63896399, doi: 10.1088/0031-9155/52/21/003.
    27. 27)
      • 27. Hogan, M.J.: ‘Hystology of the human eye – an atlas and textbook’ (WB Saunders, Michigan, 1971).
    28. 28)
      • 28. C95.3-2002: ‘IEEE recommended practice for measurements and computations of radio frequency electromagnetic fields with respect to human exposure to such fields, 100 kHz–300 GHz’, 2002, doi: 10.1109/IEEESTD.2002.94226.
    29. 29)
      • 29. Toro, J., Choukiker, Y.K.: ‘Design and analysis of meanderline PIFA antenna with MIMO system for mobile handheld device’. Proc. Int. Conf. Trends in Electronics and Informatics (ICEI), Tirunelveli, India, May 2017, pp. 10611065, doi: 10.1109/ICOEI.2017.8300872.
    30. 30)
      • 30. Clemens, M., Weiland, T.: ‘Discrete electromagnetism with the finite integration technique’, Prog. Electromagn. Res., 2001, 32, pp. 6587. Available at https://goo.gl/hCSC9F, accessed July 2018.
    31. 31)
      • 31. Guy, A., Vandenbosch, E., Vasylchenko, A.: ‘A practical guide to 3D electromagnetic software tools’, in Nasimuddin, N. (Ed.): ‘Microstrip Antennas’ (IntechOpen, London, 2011), doi: 10.5772/14756.
    32. 32)
      • 32. Bossavit, A., Kettunen, L.: ‘Yee-like schemes on a tetrahedral mesh, with diagonal lumping’, Int. J. Numer. Model., 1999, 12, pp. 129142, doi: 10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G.
    33. 33)
      • 33. Yee, K.S.: ‘Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media’, IEEE Trans. Antennas Propag., 1966, 14, pp. 302307, doi: 10.1109/TAP.1966.1138693.
    34. 34)
      • 34. Ebrahimi-Ganjeh, M.A., Attari, A.R.: ‘Interaction of dual band helical and PIFA handset antennas with human head and hand’, Prog. Electromagn. Res., 2007, 77, pp. 225242. Available at https://goo.gl/r3ti68, accessed July 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5227
Loading

Related content

content/journals/10.1049/iet-map.2018.5227
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address