Your browser does not support JavaScript!

access icon free Electric field distribution and SAR inside a human eye exposed to VR glasses

The aim of this study is a numerical analysis of the electric field and the specific absorption rate (SAR) distribution within a realistic 3D-human eye model exposed to electromagnetic (EM) wave of virtual reality (VR) glasses at the frequency of third generation, long-term evolution-4G, and the frequency of the latest generation of mobile networks – 5G. To obtain the values of the electric field and SAR, the numerical solution of equations of EM waves propagation has been used. A new realistic 3D-human head and human eye model has been created. The obtained results are shown for different biological tissues of the eye exposed to EM radiation from VR glasses at different frequencies. The maximum absorption of EM energy will be discussed for the following frequencies: 900 MHz, 2.6 GHz, and 28 GHz. The maximum values of electric field strength in the human eye tissue at the frequencies 28 GHz and 900 MHz are 94.43 and 137.3 V/m, respectively (higher than referent values), whereas for 2.6 GHz amounts 8.62 V/m (lower than referent limits). The obtained SAR peaks do not overcome prescribed safety values.


    1. 1)
      • 29. Toro, J., Choukiker, Y.K.: ‘Design and analysis of meanderline PIFA antenna with MIMO system for mobile handheld device’. Proc. Int. Conf. Trends in Electronics and Informatics (ICEI), Tirunelveli, India, May 2017, pp. 10611065, doi: 10.1109/ICOEI.2017.8300872.
    2. 2)
      • 27. Hogan, M.J.: ‘Hystology of the human eye – an atlas and textbook’ (WB Saunders, Michigan, 1971).
    3. 3)
      • 34. Ebrahimi-Ganjeh, M.A., Attari, A.R.: ‘Interaction of dual band helical and PIFA handset antennas with human head and hand’, Prog. Electromagn. Res., 2007, 77, pp. 225242. Available at, accessed July 2018.
    4. 4)
      • 30. Clemens, M., Weiland, T.: ‘Discrete electromagnetism with the finite integration technique’, Prog. Electromagn. Res., 2001, 32, pp. 6587. Available at, accessed July 2018.
    5. 5)
      • 21. Conil, E., Hadjem, A., Lacroux, F., et al: ‘Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain’, Phys. Med. Biol., 2008, 53, pp. 15111525, doi: 10.1088/0031-9155/53/6/001.
    6. 6)
      • 31. Guy, A., Vandenbosch, E., Vasylchenko, A.: ‘A practical guide to 3D electromagnetic software tools’, in Nasimuddin, N. (Ed.): ‘Microstrip Antennas’ (IntechOpen, London, 2011), doi: 10.5772/14756.
    7. 7)
      • 23. Stanković, V., Jovanović, D., Krstić, D., et al: ‘Electric field distribution and SAR in human head from mobile phones’. Proc. Ninth Int. Symp. Advanced Topics in Electrical Engineering, Bucharest, Romania, May 2015, pp. 392397, doi: 10.1109/ATEE.2015.7133835.
    8. 8)
      • 28. C95.3-2002: ‘IEEE recommended practice for measurements and computations of radio frequency electromagnetic fields with respect to human exposure to such fields, 100 kHz–300 GHz’, 2002, doi: 10.1109/IEEESTD.2002.94226.
    9. 9)
      • 15. Hirtl, R., Schmid, G.: ‘Numerical analysis of specific absorption rate in the human head due to a 13.56 MHz RFID-based intra-ocular pressure measurement system’, Phys. Med. Biol., 2013, 58, (18), pp. 267277, doi: 10.1088/0031-9155/58/18/N267.
    10. 10)
      • 8. Hirata, A., Matsuyama, S., Shiozawa, T.: ‘Temperature rises in the human eye exposed to EM waves in the frequency range 0.6–6 GHz’, IEEE Trans. Electromagn. Compat., 2000, 42, (4), pp. 386393, doi: 10.1109/15.902308.
    11. 11)
      • 19. Zhao, H., Mayzus, R., Sun, S., et al: ‘28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York city’. Proc. IEEE Int. Conf. Communications, Budapest, Hungary, June 2013, pp. 51635167, doi: 10.1109/ICC.2013.6655403.
    12. 12)
      • 14. Hirata, A.: ‘Temperature increase in human eyes due to near-field and far-field exposures at 900 MHz, 1.5 GHz, and 1.9 GHz’, IEEE Trans. Electromagn. Compat., 2005, 47, pp. 6876, doi: 10.1109/TEMC.2004.842113.
    13. 13)
      • 3. 1999/519/EC: ‘Council recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)’, 1999. Available at, accessed July 2018.
    14. 14)
      • 13. Lazzi, G., DeMarco, S.C., Liu, W., et al: ‘Computed SAR and thermal elevation in a 0.25 mm 2D model of the human eye and head in response to an implanted retinal stimulator – part II: results’, IEEE Trans. Antennas Propag., 2003, 51, pp. 22862295, doi: 10.1109/TAP.2003.816395.
    15. 15)
      • 26. Hirata, A., Watanabe, S., Fujiwara, O., et al: ‘Temperature elevation in the eye of anatomically based human head models for plane-wave exposures’, Phys. Med. Biol., 2007, 52, (21), pp. 63896399, doi: 10.1088/0031-9155/52/21/003.
    16. 16)
      • 12. Wessapan, T., Rattanadecho, P.: ‘Specific absorption rate and temperature increase in the human eye due to electromagnetic fields exposure at different frequencies’, Int. J. Heat Mass Transfer, 2013, 64, pp. 426435, doi: 10.1016/j.ijheatmasstransfer.2013.04.060.
    17. 17)
      • 32. Bossavit, A., Kettunen, L.: ‘Yee-like schemes on a tetrahedral mesh, with diagonal lumping’, Int. J. Numer. Model., 1999, 12, pp. 129142, doi: 10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G.
    18. 18)
      • 16. Schaumburg, F., Guarnieri, F.A.: ‘Assessment of thermal effects in a model of the human head implanted with a wireless active microvalve for the treatment of glaucoma creating a filtering bleb’, Phys. Med. Biol., 2017, 62, (9), pp. 191203, doi: 10.1088/1361-6560/aa5dae.
    19. 19)
      • 6. ICNIRP guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)’, International Commission on Non-Ionizing Radiation Protection, 1998. Available at, accessed July 2018.
    20. 20)
      • 5. Regulations on limits of exposure to non-ionizing radiation’, Official Gazette of RS, no. 104/09, 2009. Available at, accessed July 2018.
    21. 21)
      • 7. IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans, international agency for research on cancer’, Press Release no. 8, 2011. Available at, accessed July 2018.
    22. 22)
      • 17. Buccella, C., De Santis, V., Feliziani, M.: ‘Numerical prediction of SAR and thermal elevation in a 0.25 mm 3-D model of the human eye exposed to handheld transmitters’. Proc. IEEE Int. Symp. Electromagnetic Compatibility, Honolulu, HI, USA, July 2007, pp. 16, doi: 10.1109/ISEMC.2007.77.
    23. 23)
      • 33. Yee, K.S.: ‘Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media’, IEEE Trans. Antennas Propag., 1966, 14, pp. 302307, doi: 10.1109/TAP.1966.1138693.
    24. 24)
      • 25. Gabriel, C.: ‘Compilation of the dielectric properties of body tissues at RF and microwave frequencies’, Final Technical Report AL/OE-TR-1996-0037. RFR Division, Brooks Air Force Base, San Antonio, USA. Available at, accessed July 2018.
    25. 25)
      • 18. Azar, Y., Wong, G.N., Wang, K., et al: ‘28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York city’. Proc. IEEE Int. Conf. Communications, Budapest, Hungary, June 2013, pp. 51435147, doi: 10.1109/ICC.2013.6655399.
    26. 26)
      • 2. Virtual reality (VR) market by hardware and software for (consumer, commercial, enterprise, medical, aerospace and defence, automotive, energy and others). Global industry analysis, size, share, growth, trends, and forecast, 2016–2022’, Zion Market Research report, 2018. Available at, accessed July 2018.
    27. 27)
      • 9. Bernardi, P., Cavagnaro, M., Pisa, S., et al: ‘SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN’, IEEE Trans. Microw. Theory Tech., 1998, 46, (12), pp. 20742082, doi: 10.1109/22.739285.
    28. 28)
      • 1. Yang, P.: ‘The untold story of magic leap, the world's most secretive startup’, 2016. Available at, accessed July 2018.
    29. 29)
      • 11. Wessapan, T., Srisawatdhisukul, S., Rattanadecho, P.: ‘Specific absorption rate and temperature distributions in human head subjected to mobile phone radiation at different frequencies’, Int. J. Heat Mass Transf., 2012, 55, pp. 347359, doi: 10.1016/j.ijheatmasstransfer.2011.09.027.
    30. 30)
      • 20. Samimi, M., Wang, K., Azar, Y., et al: ‘28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York city’. Proc. IEEE 77th Vehicular Technology Conf. (VTC Spring), Dresden Germany, June 2013, pp. 16, doi: 10.1109/VTCSpring.2013.6691812.
    31. 31)
      • 4. C95.1-2005: ‘IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz’, 2006, doi: 10.1109/IEEESTD.2006.99501.
    32. 32)
      • 24. Dielectric properties of tissues. Available at, accessed July 2018.
    33. 33)
      • 10. Bhat, M.A., Kumar, V.: ‘Calculation of SAR and measurement of temperature change of human head due to the mobile phone waves at frequencies 900 MHz and 1800 MHz’, Adv. Phys. Theor. Appl., 2013, 16, pp. 5463. Available at, accessed July 2018.
    34. 34)
      • 22. Fujimoto, M., Hirata, A., Wang, J., et al: ‘FDTD-derived correlation of maximum temperature increase and peak SAR in child and adult head models due to dipole antenna’, IEEE Trans. Electromagn. Compat., 2006, 48, (1), pp. 240247, doi: 10.1109/TEMC.2006.870816.

Related content

This is a required field
Please enter a valid email address