Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Minimising number of perturbed elements in linear and planar adaptive arrays with broad nulls using compressed sensing approach

Here, a new algorithm, based on compressed sensing (CS), is presented for generating broad nulls in linear and planar adaptive antenna arrays through the control of only a small number of elements. In particular, sparse recovery theorem and convex optimisation are used to generate the broad nulls by perturbing the complex weights of a minimum number of elements. The problem is first formulated as a sparse recovery problem and then relaxed to the form of a convex optimisation problem. In addition to the nulling constraints, another constraint is added to ensure that the perturbed elements do not cause a pointing error in the synthesised array pattern. Also, one more constraint is used to set a predefined peak value for the array response in the sidelobe region. The optimisation problem is then solved iteratively using the iterative re-weighted -norm minimisation technique to reduce the number of perturbed array elements to the lowest possible number while satisfying the constraints on the radiation pattern. Simulations were conducted for linear and planar arrays. The results show that the proposed algorithm is capable of forming the required nulls by changing the complex weights of only a small percentage of the array elements.

References

    1. 1)
      • 9. Mohammed, J.R., Sayidmarie, K.H.: ‘Null steering method by controlling two elements’, IET Microwaves, Antennas Propag., 2014, 8, (15), pp. 13481355.
    2. 2)
      • 7. Lu, Y., Yeo, B.K.: ‘Adaptive wide null steering for digital beamforming array with the complex coded genetic algorithm’. Proc. 2000 IEEE International Conference on Phased Array Systems and Technology, Dana Point, CA, USA, May 2000, pp. 557560.
    3. 3)
      • 15. Shen, H.O., Wang, B.H., Li, L.J.: ‘Effective approach for pattern synthesis of sparse reconfigurable antenna arrays with exact pattern matching’, IET Microwaves, Antennas Propagation, 2016, 10, (7), pp. 748755.
    4. 4)
      • 18. Liu, Y., Zhang, L., Ye, L., et al: ‘Synthesis of sparse arrays with frequency-invariant-focused beam patterns under accurate sidelobe control by iterative second-order cone programming’, IEEE Trans. Antennas and Propag., 2015, 63, (12), pp. 58265832.
    5. 5)
      • 3. Lam, T.: ‘Null steering antenna array using phase-only weights’, Proc. 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, July 2014, pp. 1660–1661.
    6. 6)
      • 8. El.Azhary, I., Afifi, M.S., Excell, P.S.: ‘A simple algorithm for sidelobe cancellation in a partially adaptive linear array’, IEEE Trans. Antennas and Propag., 1988, 36, (10), pp. 14821486.
    7. 7)
      • 13. Oliveri, G., Carlin, M., Massa, A.: ‘Complex-weight sparse linear array synthesis by Bayesian compressive sampling’, IEEE Trans. Antennas and Propag., 2012, 60, (5), pp. 23092326.
    8. 8)
      • 2. Dawoud, M., Nuruzzaman, M.: ‘Null steering in rectangular planar arrays by amplitude control using genetic algorithms’, Int. J. Electron., 2000, 87, (12), pp. 14731484.
    9. 9)
      • 6. Steyskal, H.: ‘Wide-band nulling performance versus number of pattern constraints for an array antenna’, IEEE Trans. Antennas and Propag., 1983, 31, (1), pp. 159163.
    10. 10)
      • 16. Yan, F., Yang, P., Yang, F., et al: ‘Synthesis of pattern reconfigurable sparse arrays with multiple measurement vectors focuss method’, IEEE Trans. Antennas and Propag., 2017, 65, (2), pp. 602611.
    11. 11)
      • 12. Massa, A., Rocca, P., Oliveri, G.: ‘Compressive sensing in electromagnetics - a review’, IEEE Antennas Propag. Mag., 2015, 57, (1), pp. 224238.
    12. 12)
      • 22. Candès, E.J., Wakin, M.B., Boyd, S.P.: ‘Enhancing sparsity by reweighted 1 minimization’, J Fourier Anal. Appl., 2008, 14, (5), pp. 877905.
    13. 13)
      • 5. Mahto, S.K., Choubey, A.: ‘A novel hybrid iwo/wdo algorithm for interference minimization of uniformly excited linear sparse array by position-only control’, IEEE Antennas Wireless Propag. Lett., 2016, 15, pp. 250254.
    14. 14)
      • 23. Van.Trees, H.L.: ‘Optimum array processing: part IV of detection, estimation, and modulation theory’. Detection, Estimation, and Modulation Theory. (Wiley, 2004).
    15. 15)
      • 11. Haupt, R.L.: ‘Adaptive nulling with weight constraints’, Progress in Electromagnet. Res. B, 2010, 26, pp. 2338.
    16. 16)
      • 17. Nongpiur, R.C., Shpak, D.J.: ‘Synthesis of linear and planar arrays with minimum element selection’, IEEE Trans. Signal Process., 2014, 62, (20), pp. 53985410.
    17. 17)
      • 19. Khosravi, M., Fakharzadeh, M., Bastani, M.H.: ‘Large array null steering using compressed sensing’, IEEE Signal Processing Letter, 2016, 23, (8), pp. 10321036.
    18. 18)
      • 10. Haupt, R.L.: ‘Nulling with limited degrees of freedom’. (ROME AIR DEVELOPMENT CENTER GRIFFISS AFB NY, 1983)..
    19. 19)
      • 1. Ibrahim, H.M.: ‘Null steering by real-weight control-a method of decoupling the weights’, IEEE Trans. Antennas and Propag., 1991, 39, (11), pp. 16481650.
    20. 20)
      • 14. Viani, F., Oliveri, G., Massa, A.: ‘Compressive sensing pattern matching techniques for synthesizing planar sparse arrays’, IEEE Trans. Antennas and Propag., 2013, 6, (9), pp. 45774587.
    21. 21)
      • 4. Er, M.H.: ‘Linear antenna array pattern synthesis with prescribed broad nulls’, IEEE Trans. Antennas Propag., 1990, 38, (9), pp. 14961498.
    22. 22)
      • 24. Grant, M., Boyd, S.: ‘CVX: Matlab software for disciplined convex programming, version 2.1’, 2014. http://cvxr.com/cvx.
    23. 23)
      • 20. Mohimani, H., Babaie.Zadeh, M., Jutten, C.: ‘A fast approach for overcomplete sparse decomposition based on smoothed 0 norm’, IEEE Trans. Antennas and Propag., 2009, 57, (1), pp. 289301.
    24. 24)
      • 21. Abdelhay, M.A., El.Khamy, S.E.: ‘A new compressed sensing based approach for null steering of linear arrays by perturbing minimum number of elements’. Proc. 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, Canada, November 2017, pp. 1–4.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5221
Loading

Related content

content/journals/10.1049/iet-map.2018.5221
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address