Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Impedance matching bandpass filter with a controllable spurious frequency based on λ/2 stepped impedance resonator

An impedance matching bandpass filter (BPF) with arbitrary image impedance (Z 2) of parallel/antiparallel coupled lines SIR is presented in this study. The proposed structures consist of conventional SIRs and additional transmission lines with an electrical length of π/2–θ 2 at the input and output ports. Moreover, the coupling coefficients of the coupled line can be controlled by the image impedance and it does not affect the bandpass responses. Since the first spurious frequency of the conventional SIR BPF can be suppressed with a transmission zero by using antiparallel coupled lines, the proposed BPF can provide wide stopband and high attenuation characteristics. For the experimental validation of the proposed filter, three types of BPFs with 20–50 and 50–100 Ω termination impedances were designed and fabricated at the operating centre frequency (f 0) of 2.6 GHz. By using the antiparallel coupled line instead of the parallel coupled line, the first spurious frequency is occurred at 3.71f 0 and the stopband rejection considerably improved.

References

    1. 1)
      • 5. Ahn, D., Kim, C., Chung, M., et al: ‘The design of parallel coupled line filter with arbitrary image impedance’. IEEE Int. Microwave Symp. Digest, Baltimore, Maryland, USA, 1998, pp. 909912.
    2. 2)
      • 23. Wu, Q., Zhu, L.: ‘Synthesis design of a wideband impedance transformer consisting of two-section coupled lines’, IET Microw. Antennas Propag., 2017, 11, (1), pp. 144150.
    3. 3)
      • 25. Makimoto, M., Yamashita, S.: ‘Bandpass filter using parallel coupled stripline stepped impedance resonators’, IEEE Trans. Microw. Theor. Technol., 1980, 28, (12), pp. 14131417.
    4. 4)
      • 6. Akra, M., Pistono, E., Ferrari, P., et al: ‘A novel accurate method for synthesizing parallel coupled line bandpass filter’. 13th Mediterranean Microwave Symp., Saida, Lebanon, 2013, pp. 14.
    5. 5)
      • 2. Chen, J., Ma, Y., Cai, J., et al: ‘Novel frequency-agile bandpass filter with wide tuning range and spurious suppression’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 64286435.
    6. 6)
      • 4. Swanson, D., Macchiarella, G.: ‘Microwave filter design by synthesis and optimization’, IEEE Microw. Mag., 2007, 8, (2), pp. 5569.
    7. 7)
      • 11. Chen, K., Lee, T., Peroulis, D.: ‘Co-design of multi-band high-efficient power amplifier and three-pole high-Q tunable filter’, IEEE Microw. Wirel. Compon. Lett., 2013, 23, (12), pp. 647649.
    8. 8)
      • 3. Cohn, S. B.: ‘Parallel-coupled transmission-line resonator filters’, IEEE Trans. Microw. Theor. Technol., 1958, 6, (4), pp. 223231.
    9. 9)
      • 20. Kim, P., Jeong, J., Chaudhary, G., et al: ‘A design of unequal termination impedance power divider with filtering and out-of-band suppression characteristics’. Proc. of the 45th European Microw. Conf., Paris, France, 2015, pp. 123126.
    10. 10)
      • 14. Chen, K., Peroulis, D.: ‘Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks’, IEEE Trans. Microw. Theor. Technol., 2011, 59, (12), pp. 31623173.
    11. 11)
      • 29. Pozar, D. M.: ‘Microwave engineering’ (John Wiley & Sons, 2012, 4th edn.).
    12. 12)
      • 24. Sagawa, M., Makimoto, M., Yamashita, S.: ‘Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators’, IEEE Trans. Microw. Theor. Technol., 1997, 45, (7), pp. 10781085.
    13. 13)
      • 27. Matthaei, G. L., Young, L., Jones, E. M. T.: ‘Microwave filter, impedance-matching networks and coupling structures’ (McGraw-Hill, New York, NY, USA, 1964).
    14. 14)
      • 31. Zhang, S., Zhu, L., Weerasekera, R.: ‘Synthesis of inline mixed coupled quasi-elliptic bandpass filters based on λ/4 resonators’, IEEE Trans. Microw. Theor. Technol., 2015, 63, (10), pp. 34873493.
    15. 15)
      • 19. Kim, P., Chaudhary, G., Jeong, Y.: ‘Enhancement impedance transforming ratios of coupled line impedance transformer with wide out-of-band suppression characteristics’, Microw. Opt. Technol. Lett., 2015, 57, (7), pp. 16001603.
    16. 16)
      • 26. Worapishet, A., Srisathit, K., Surakampontorn, W.: ‘Stepped-impedance coupled resonators for implementation of parallel coupled microstrip filter with spurious band suppression’, IEEE Trans. Microw. Theor. Technol., 2012, 60, (6), pp. 15401548.
    17. 17)
      • 21. Jeong, J., Kim, P., Jeong, Y.: ‘High efficiency power amplifier with frequency band selective matching networks’, Microw. Opt. Technol. Lett., 2015, 57, (9), pp. 20312034.
    18. 18)
      • 7. Zhang, S., Zhu, L.: ‘Synthesis method for even-order symmetrical Chebyshev bandpass filters with alternative J/K inverters and λ/4 resonators’, IEEE Trans. Microw. Theor. Technol., 2013, 61, (2), pp. 808816.
    19. 19)
      • 8. Lee, H., Tsai, C.: ‘Improved coupled-microstrip filter design using effective even-mode and odd-mode characteristic impedance’, IEEE Trans. Microw. Theor. Technol., 2005, 53, (9), pp. 28122818.
    20. 20)
      • 30. Hong, J. S.: ‘Microstrip filter for RF/microwave application’ (John Wiley & Sons, 2011, 2nd edn.).
    21. 21)
      • 16. Yang, M., Xia, J., Guo, Y., et al: ‘Highly efficient broadband continuous inverse class-F power amplifier design using modified elliptic low-pass filtering matching network’, IEEE Trans. Microw. Theor. Technol., 2016, 64, (5), pp. 15151525.
    22. 22)
      • 28. Makimoto, M., Yamashita, S.: ‘Microwave resonators and filters for wireless communication’ (Springer-Verlag, Berlin, Heidelberg, 2001).
    23. 23)
      • 17. Oraizi, H., Moradian, M., Hirasawa, K.: ‘Design and optimization of microstrip parallel-coupled line bandpass filters incorporating impedance matching’, IEICE Trans. Commun., 2006, E89-B, (11), pp. 29822988.
    24. 24)
      • 15. Chen, K., Peroulis, D.: ‘Design of broadband highly efficient harmonic-tuned power amplifier using in-band continuous class-F-1/F mode transferring’, IEEE Trans. Microw. Theor. Technol., 2012, 60, (12), pp. 41074116.
    25. 25)
      • 18. Kim, P., Chaudhary, G., Jeong, Y.: ‘Unequal termination impedance parallel-coupled lines band-pass filter with arbitrary image impedance’, J. Electromagn. Wave Appl., 2018, 32, (8), pp. 984996.
    26. 26)
      • 32. Zhang, S., Zhu, L., Li, R.: ‘Compact quadruplet bandpass filter based on alternative J/K inverters and λ/4 resonators’, IEEE Microw. Wireless Compon. Lett., 2012, 22, (5), pp. 224226..
    27. 27)
      • 1. Razavi, B.: ‘RF microelectronics’ (Prentice-Hall PTR, NJ, Upper Saddle River, USA, 1998), pp. 118129.
    28. 28)
      • 13. Cristal, E.: ‘Tables of maximally flat impedance-transformation networks of low-pass filter form’, IEEE Trans. Microw. Theor. Technol., 1965, 13, (5), pp. 693695.
    29. 29)
      • 12. Matthaei, G. L.: ‘Tables of Chebyshev impedance-transformation networks of low-pass filter form’, Proc. IEEE, 1964, 52, (8), pp. 939963.
    30. 30)
      • 10. Chen, K., Lee, J., Chappell, W., et al: ‘Co-design of highly efficient power amplifier and high-Q output bandpass filter’, IEEE Trans. Microw. Theor. Technol., 2013, 61, (11), pp. 39403950.
    31. 31)
      • 9. Chen, K., Liu, X., Chappell, W., et al: ‘Co-design of power amplifier and narrowband filter using high-Q evanescent-mode cavity resonator as the output matching network’. IEEE Int. Microwave Symp. Digest, Baltimore, Maryland, USA, 2011, pp. 14.
    32. 32)
      • 22. Kim, P., Chaudhary, G., Jeong, Y.: ‘Ultra-high transforming ratio coupled line impedance transformer with bandpass response’, IEEE Microw. Wirel. Compon. Lett., 2015, 25, (7), pp. 445447.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5127
Loading

Related content

content/journals/10.1049/iet-map.2018.5127
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address