http://iet.metastore.ingenta.com
1887

Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures

Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A decoupling metamaterial (MTM) configuration based on fractal electromagnetic-bandgap (EMBG) structure is shown to significantly enhance isolation between transmitting and receiving antenna elements in a closely-packed patch antenna array. The MTM-EMBG structure is cross-shaped assembly with fractal-shaped slots etched in each arm of the cross. The fractals are composed of four interconnected-‘Y-shaped’ slots that are separated with an inverted-‘T-shaped’ slot. The MTM-EMBG structure is placed between the individual patch antennas in a 2 × 2 antenna array. Measured results show the average inter-element isolation improvement in the frequency band of interest is 17, 37 and 17 dB between radiation elements #1 & #2, #1 & #3, and #1 & #4, respectively. With the proposed method there is no need for using metallic-via-holes. The proposed array covers the frequency range of 8–9.25 GHz for X-band applications, which corresponds to a fractional-bandwidth of 14.5%. With the proposed method the edge-to-edge gap between adjacent antenna elements can be reduced to 0.5λ0 with no degradation in the antenna array's radiation gain pattern. Across the array's operating band, the measured gain varies between 4 and 7 dBi, and the radiation efficiency varies from 74.22 and 88.71%. The proposed method is applicable in the implementation of closely-packed patch antenna arrays used in SAR and MIMO systems.

References

    1. 1)
      • 1. Ludwig, A.: ‘Mutual coupling, gain and directivity of an array of two identical antennas’, IEEE Trans. Antennas Propag., 1976, AP-24, (6), pp. 837841.
    2. 2)
      • 2. Janaswamy, R.: ‘Effect of element mutual coupling on the capacity of fixed length linear arrays’, IEEE Antennas Wirel. Propag. Lett., 2002, 1, pp. 157160.
    3. 3)
      • 3. Habashi, A., Naurinia, J., Ghbadi, C.: ‘A rectangular defected ground structure (DGS) for reduction of mutual coupling between closely-spaced microstrip antennas’. Proc. 20th Iranian Conf. on Electrical Engineering, Tehran, Iran, 2012, pp. 13471350.
    4. 4)
      • 4. Luo, C.M., Hong, J.S., Zhong, L.L.: ‘Isolation enhancement of a very compact UWB-MIMO slot antenna with two defected ground structures’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 17661769.
    5. 5)
      • 5. OuYang, J., Yang, F., Wang, Z.M.: ‘Reduction of mutual coupling of closely spaced microstrip MIMO antennas for WLAN application’, IEEE Ant. Wirel. Propag. Lett., 2011, 10, pp. 310312.
    6. 6)
      • 6. Zhu, F.G., Xu, J.D., Xu, Q.: ‘Reduction of mutual coupling between closely packed antenna elements using defected ground structure’, Electron. Lett., 2012, 45, (12), pp. 601602.
    7. 7)
      • 7. Tang, T.C., Lin, K.H.: ‘An ultrawideband MIMO antenna with dual band-notched function’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 10761079.
    8. 8)
      • 8. Qamar, Z., Naeem, U., Khan, S.A., et al: ‘Mutual coupling reduction for high performance densely packed patch antenna arrays on finite substrate’, IEEE Trans. Antennas Propag., 2016, 64, (5), pp. 16531660.
    9. 9)
      • 9. Suwailam, M.M.B., Siddiqui, O.F., Ramahi, O.M.: ‘Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators’, IEEE Antennas Wirel. Propag., Lett., 2010, 9, pp. 876878.
    10. 10)
      • 10. Shafique, M.F., Qamar, Z., Riaz, L., et al: ‘Coupling suppression in densely packed microstrip arrays using metamaterial structure’, Microw Opt Technol Lett., 2015, 57, (3), pp. 759763.
    11. 11)
      • 11. Islam, M.T., Alam, M.S.: ‘Compact EBG structure for alleviating mutual coupling between patch antenna array elements’, Prog. Electromagn. Res., 2013, 137, pp. 425438.
    12. 12)
      • 12. Farsi, S., Schreurs, D., Nauwelaers, B.: ‘Mutual coupling reduction of planar antenna by using a simple microstrip U-section’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 15011503.
    13. 13)
      • 13. Ghosh, J., Ghosal, S., Mitra, D., et al: ‘Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator’, Prog. Electromagn. Res. Lett., 2016, 59, pp. 115122.
    14. 14)
      • 14. Farahani, H.S., Veysi, M., Kamyab, M., et al: ‘Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate’, IEEE Antennas Wirel. Propag. Lett., 2010, 9, pp. 5759.
    15. 15)
      • 15. Rajo-Iglesias, E., Quevedo-Teruel, O., Inclan-Sanchez, L.: ‘Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate’, IEEE Trans. Antennas Propag., 2008, 56, (6), pp. 16481655.
    16. 16)
      • 16. Yang, F., Rahmat-Samii, Y.: ‘Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications’, IEEE Trans. Antennas Propag, 2003, 51, (10), pp. 29362946.
    17. 17)
      • 17. Exposito-Dominguez, G., Fernandez-Gonzalez, J.M., Padilla, P., et al: ‘New EBG solutions for mutual coupling reduction’. Eur. Conf. Antennas Propag., Prague, Czech Republic, 2012, pp. 28412844.
    18. 18)
      • 18. Al-Hasan, M.J., Denidni, T.A., Sebak, A.R.: ‘Millimeter wave compact EBG structure for mutual coupling reduction applications’, IEEE Trans. Antennas Propag., 2015, 63, (2), pp. 823828.
    19. 19)
      • 19. Exposito-Dominguez, G., Fernandez-Gonzalez, J.M., Padilla, P., et al: ‘Mutual coupling reduction using EBG in steering antennas’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 12651268.
    20. 20)
      • 20. Yang, X., Liu, Y., Xu, Y.-X., et al: ‘Isolation enhancement in patch antenna array with fractal UC-EBG structure and cross slot’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 21752178.
    21. 21)
      • 21. Zhang, J., Ci, G., Cao, Y., et al: ‘A wide bandgap slot fractal UC-EBG based on moore space-filling geometry for microwave application’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 3337.
    22. 22)
      • 22. Anguera, J., Puente, C., Martinez, E., et al: ‘The fractal Hilbert monopole: a two-dimensional wire’, Microw Opt Technol Lett, 2003, 36, (2), pp. 102104.
    23. 23)
      • 23. Zhang, J., Ci, G., Cao, Y., et al: ‘A wide band-gap slot fractal UC-EBG based on Moore space-filling geometry for microwave application’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 3337.
    24. 24)
      • 24. Biswas, B., Ghatak, R., Poddar, D.R.: ‘UWB monopole antenna with multiple fractal slots for band-notch characteristic and integrated bluetooth functionality’, J. Electromagn. Waves Appl., 2015, 29, (12), pp. 15931609.
    25. 25)
      • 25. Yu, A., Zhang, X.: ‘A novel method to improve the performance of microstrip antenna arrays using a dumbbell EBG structure’, IEEE Antennas Wirel. Propag. Lett., 2003, 2, (1), pp. 170172.
    26. 26)
      • 26. Alsath, M., Kanagasabai, G.M., Balasubramanian, B.: ‘Implementation of slotted meander line resonators for isolation enhancement in microstrip patch antenna arrays’, IEEE Antennas Wirel. Propag. Lett., 2013, 12, pp. 1518.
    27. 27)
      • 27. Ghosh, C.K., Parui, S.K.: ‘Reduction of mutual coupling between E-shaped microstrip antennas by using a simple microstrip I-section’, Microw. Opt. Tech. Lett., 2013, 55, (11), pp. 25442549.
    28. 28)
      • 28. Yang, X.M., Liu, X.G., Zhu, X.Y., et al: ‘Reduction of mutual coupling between closely packed patch antenna using waveguide metamaterials’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 389391.
    29. 29)
      • 29. Qamar, Z., Park, H.C.: ‘Compact waveguided metamaterials for suppression of mutual coupling in microstrip array’, Prog. Electromagn. Res., 2014, 149, pp. 183192.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5103
Loading

Related content

content/journals/10.1049/iet-map.2018.5103
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address