access icon free Wideband RCS reduction using three different implementations of AMC structures

Here, two new AMC structures are presented with phase difference in wideband frequency of 4.97–17.15 GHz. Three implementations of two AMC structures are presented, which include periodic checkerboard structure, aperiodic checkerboard structure, and randomised structure. The periodic checkerboard structure is presented in two models. In the first model, the RCS is reduced > 9.6 dB in the frequency range of 9.3–16.9 GHz, which is equivalent to 58.02%. In the second model, the RCS is reduced >7.8 dB in the frequency range of 8.1–16.9 GHz, which is equivalent to 70.4%. The second model is analysed through FMB parameter, bistatic and monostatic RCS. For improving the RCS reduction bandwidth, the new aperiodic checkerboard structure and the optimal randomised structure are presented with bandwidth of 81.67 and 98.69%, respectively. In aperiodic and randomised structure, the reflected field is scattered more uniformly in many direction. Therefore, the 3D bistatic RCS pattern is improved greatly. For validating the result of simulation, the second model of periodic checkerboard structure is fabricated and RCS reduction is measured, which are in good agreement with simulation results.

Inspec keywords: electromagnetic wave scattering; radar antennas; radar cross-sections

Other keywords: optimal randomised structure; monostatic RCS; aperiodic checkerboard structure; wideband frequency; AMC structures; periodic checkerboard structure; frequency 8.1 GHz to 16.9 GHz; aperiodic structure; frequency 4.97 GHz to 17.15 GHz; RCS reduction bandwidth; 3D bistatic RCS pattern; frequency 9.3 GHz to 16.9 GHz; noise figure 7.8 dB; noise figure 9.6 dB

Subjects: Electromagnetic wave propagation; Radar equipment, systems and applications; Radar theory

References

    1. 1)
      • 5. Sun, L., Cheng, H., Zhou, Y., et al: ‘Broadband metamaterial absorber based on coupling resistive frequency selective surface’, Opt. Express, 2012, 20, (4), pp. 46754680.
    2. 2)
      • 18. Chen, W., Balanis, C.A., Birtcher, C.R.: ‘Dual wide-band checkerboard surfaces for radar cross section reduction’, IEEE Trans. Antennas Propag., 2016, 64, (9), pp. 41334138.
    3. 3)
      • 1. Munk, B.A.: ‘Frequency selective surfaces: theory and design’ (Wiley, New York, NY, USA, 2000, 1st edn.).
    4. 4)
      • 14. Esmaeli, S.H., Sedighy, S.H.: ‘Wideband radar cross-section reduction by AMC’, Electron. Lett., 2015, 52, (1), pp. 7071.
    5. 5)
      • 13. Galarregui, J.C.I., Pereda, A.T., De Falcon, J.L.M., et al: ‘Broadband radar cross-section reduction using AMC technology’, IEEE Trans. Antennas Propag., 2013, 61, (12), pp. 61366143.
    6. 6)
      • 6. Chaurasiya, D., Ghosh, S., Bhattahcaryya, S., et al: ‘Design of a wideband absorber using resistively loaded frequency selective surface’. Applied Electromagnetics Conf. (AEMC), Guwahati, India, December 2015, pp. 12.
    7. 7)
      • 17. Chen, W., Balanis, C.A., Birtcher, C.R.: ‘Checkerboard EBG surfaces for wideband radar cross section reduction’, IEEE Trans. Antennas Propag., 2015, 63, (6), pp. 26362645.
    8. 8)
      • 4. Shang, Y., Shen, Z., Xiao, S.: ‘On the design of single-layer circuit analog absorber using double-square-loop array’, IEEE Trans. Antennas Propag., 2013, 61, (12), pp. 60226029.
    9. 9)
      • 2. Kern, D.J., Werner, D.H.: ‘A genetic algorithm approach to the design of ultrathin electromagnetic bandgap absorbers’ surface’, Microw. Opt. Technol. Lett., 2003, 58, (1), pp. 6164.
    10. 10)
      • 11. Zhang, Y., Mittra, R., Wang, B.Z.: ‘AMCs for ultra-thin and broadband RAM design’, Electron. Lett., 2009, 45, (10), pp. 484485.
    11. 11)
      • 7. Kundu, D., Mohan, A., Chakrabarty, A.: ‘Single-layer wideband microwave absorber using array of crossed dipoles’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 15891592.
    12. 12)
      • 21. Knot, E.F., Tuley, M.T., Shaeffer, J.F., et al: ‘Radar cross section’ (Artech House, Norwood, MA, USA, 1993, 2nd edn.).
    13. 13)
      • 16. Edalati, A., Sarabandi, K.: ‘Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces’, IEEE Trans. Antennas Propag., 2014, 62, (2), pp. 747754.
    14. 14)
      • 8. Ghosh, S., Bhattacharyya, S., Srivastava, K.V.: ‘Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber’, IET Microw. Antennas Propag., 2016, 10, (8), pp. 850855.
    15. 15)
      • 3. Costa, F., Monorchio, A., Manara, G.: ‘Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces’, IEEE Trans. Antennas Propag., 2010, 58, (5), pp. 15511558.
    16. 16)
      • 20. Modi, A.Y., Balanis, C.A., Birtcher, C.R., et al: ‘Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductors’, IEEE Trans. Antennas Propag., 2017, 65, (10), pp. 54065417.
    17. 17)
      • 19. Pan, W., Huang, C., Pu, M., et al: ‘Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering’, Sci. Rep., 2016, 6, p. 21462.
    18. 18)
      • 10. Simms, S., Fuscos, V.: ‘Chessboard reflector for RCS reduction’, Electron. Lett., 2008, 44, (4), pp. 316318.
    19. 19)
      • 9. Paquay, M., Iriarte, J.C., Ederra, I., et al: ‘Thin AMC structure for radar cross-section reduction’, IEEE Trans. Antennas Propag., 2007, 55, (12), pp. 36303638.
    20. 20)
      • 12. Fu, Y., Li, Y., Yuan, N.: ‘Wideband composite AMC surfaces for RCS reduction’, Microw. Opt. Technol. Lett., 2011, 53, (4), pp. 712715.
    21. 21)
      • 15. Mighani, M., Dadashzadeh, G.: ‘Broadband RCS reduction using a novel double layer chessboard AMC surface’, Electron. Lett., 2016, 52, (14), pp. 12531255.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5024
Loading

Related content

content/journals/10.1049/iet-map.2018.5024
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading